tf之get_Variable()

转自:https://blog.csdn.net/UESTC_C2_403/article/details/72327321

1.

tf.get_variable(name,  shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:

tf.constant_initializer:常量初始化函数

tf.random_normal_initializer:正态分布

tf.truncated_normal_initializer:截取的正态分布

tf.random_uniform_initializer:均匀分布

tf.zeros_initializer:全部是0

tf.ones_initializer:全是1

tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
  
a1 = tf.get_variable(name='a1', shape=[2,3], initializer=tf.random_normal_initializer(mean=0, stddev=1))
a2 = tf.get_variable(name='a2', shape=[1], initializer=tf.constant_initializer(1))
a3 = tf.get_variable(name='a3', shape=[2,3], initializer=tf.ones_initializer())
 
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(a1))
    print(sess.run(a2))
    print(sess.run(a3))

输出:

[[ 0.00974968 -0.22292562 -0.27393913]
 [-0.914102    1.172266    0.24210556]]
[1.]
[[1. 1. 1.]
 [1. 1. 1.]]

 

posted @ 2019-03-25 16:19  lypbendlf  阅读(183)  评论(0编辑  收藏  举报