NgDL:第四周深层神经网络

4.3核对矩阵维数

根据前向的矩阵,可以计算出右上的规律,对于第L层的w来说,其维数为(n[L],n[L-1]),n[L]表示第L层的单元数。

4.4为什么深层神经网络会好用?

如果要做一个人脸识别的系统:那么浅层的神经网络,进行特征识别或边缘探测,第一张图中的一个小方块就是一个神经单元?无法理解。比如说有个神经单元去找眼睛的部分,这样每个神经元就可以找脸部不同的部位,最后将这些部分放在一起。

边缘探测中针对的都是比较小的,而到面部识别会针对较大的区域。金字塔形状的NN。

Ng讲到了在语音识别上的一个应用:

输入是一段音频,第一层神经网络可以探测比较低层次的音频波形特征,比如音调变高还是变低,然后可以去探测声音的基本单元(音位),cat中的“壳”就是一个音位,然后就可以识别单词,单词组合起来就是词组。

到网络深层时就可以做更复杂的事情,比如检测脸部或者词组。

对于电路和深度学习的结合的例子说明为什么深度网络效果好。

假设要对输入特征计算异或,从x1 XOR....xn,如果画一个异或的树图,可建一个较深的异或树图,隐层数为log(n),就是一个二叉树的高度;

如果不允许使用多层神经网络的话,只能使用一个隐层,那就需要考虑所有可能的组合,需要隐层单元数程指数式增长;(需要考虑所有的可能的结合情况?)

4.7参数VS超参数

参数:就是比如NN模型中的权重和偏执单元值。

超参数:就是能控制参数的参数。比如学习率α,迭代次数,隐含层层数、隐含层中的单元数、激活函数的选择

还有一些其他的超参数:momentum,minibatch size,正则化规则等。

 //头一次知道超参数的定义,原来是这样,不过另外的超参数还不太明白。

这种公式表述的我还看不太懂,保留一下:

posted @   lypbendlf  阅读(208)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示