摘要:
一、KNN算法的介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法之一,理论上比较成熟。KNN算法首先将待分类样本表达成和训练样本一致的特征向量;然后根据距离计算待测试样本和每个训练样本的距离,选择距离最小的K个样本作为近邻样本;最后根据K个近邻样本判断待分 阅读全文
摘要:
一、感知机介绍 感知器(英语:Perceptron)是Frank Rosenblatt在1957年就职于康奈尔航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。Frank Rosen 阅读全文
摘要:
一、逻辑回归的介绍 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体 阅读全文
摘要:
一、线性回归(Linear Regression)介绍 线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x +e,e为误差服从均值为0的正态分布。线性回归是经济学的主要实证工具。例如,它是用来预测消费支出,固定投 阅读全文
摘要:
支持向量机在高维或无限维空间中构造超平面或超平面集合,其可以用于分类、回归或其他任务。直观来说,分类边界距离最近的训练数据点越远越好,因为这样可以缩小分类器的泛化误差。 调用sklearn.svm的svc函数,将MNIST数据集进行分类,并将整体分类精度输出,这里用了两种预处理的方法(将特征值变成0 阅读全文
摘要:
调用自己写的朴素贝叶斯函数正确率是84.12%,调用sklearn中的BernoulliNB函数,正确率是84.27% 调用sklearn中的BernoulliNB函数的代码如下: 结果截屏: 优化:加入主成分分析方法,进行降维操作,代码如下: 结果截屏: 待修改中! 参考链接;https://bl 阅读全文