Codeforces 1220*
C.
水题
Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=500003;
char s[maxn];
int n;
int main(){
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1,mi=maxn;i<=n;i++){
mi=min(mi,int(s[i]));
puts(mi<s[i]?"Ann":"Mike");
}
return 0;
}
D.
把节点想成一个数轴。
一张图是二分图 \(⇔\) 这张图没有奇环。
考虑两个数 \(a,b\) ,以这两个数为间隔连边,假设从 \(x\) 处开始,那么一定在 \(x+\text{lcm}(a,b)\) 处相遇。
有奇环的条件是 \(\frac{\text{lcm}(a,b)}{a}+\frac{\text{lcm}(a,b)}{b}\equiv 1 \pmod 2\)
接下来分类讨论:
- \(a,b\) 皆为奇数,不满足,无奇环
- \(a,b\) 一奇一偶,满足,有奇环
- \(a,b\) 皆为偶数,将 \(a,b/2\) ,递归处理。
因此, 这张图为二分图,即不存在奇环,当且仅当所有数在二进制下末尾有相同位数的零。
扩展到多个数也是一样的。
Code
#include<bits/stdc++.h>
using namespace std;
typedef long long D;
const int maxn=200003;
int n,buc[63];
D a[maxn];
int lg(D x){
int ret=-1;
while(x)ret++,x>>=1;
return ret;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld",a+i);
buc[lg(a[i]&-a[i])]++;
}
int ans=-1,cnt=0;
D ansi;
for(int i=0;i<=60;i++)if(buc[i]>ans)ans=buc[i],ansi=1ll<<i;
for(int i=1;i<=n;i++)if((a[i]&-a[i])!=ansi)cnt++;
printf("%d\n",cnt);
for(int i=1;i<=n;i++)if((a[i]&-a[i])!=ansi)printf("%lld ",a[i]);
return 0;
}
E.
由于不能走回头路,所以只有环才能让它调头
因此,对于每一个边双