Fork me on GitHub

和小哥哥一起刷洛谷(5) 图论之深度优先搜索DFS

关于dfs

dfs伪代码:

void dfs(s){
    for(int i=0;i<s的出度;i++){
        if(used[i]为真) continue;
        used[i]=1;
        dfs(i);
    }
    return;
}

统计无向图的连通分量

显然,你在洛谷上是搜不到这题的,因为这是我们学校团队的题。所以还是找个小板凳专心听我讲吧。

题目描述:

给定无向图G(V,E),请统计G中连通分量的数量。

  • 连通分量:结点V的一个子集V',保证V'中任意两点间都有路径
  • 需要在主循环中进行多次dfs

输入输出格式:

输入格式:

第一行包含两个整数N、M,表示该图共有N个结点和M条无向边(N<= 5000,M<=200000);

接下来M行,每行包含2个整数{u,v},表示有一条无向边(u,v)。

输出格式:

一个整数,代表图G连通分量的数量

样例:

输入:

5 4
1 5
2 3
3 4
4 2

输出:

2

代码:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
const int NR=5005;
bool color[NR];//used数组
int cnt=0,n,m;
vector<int> link[NR];
void dfs(int a){//dfs函数
    int sz=link[a].size();
    for(int i=0;i<sz;i++){
        int nx=link[a][i];
        if(color[nx]==false){
            color[nx]=true;
            dfs(nx); 
        }
    }
    return;
} 
int main(){
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++){
        int st,en;
        scanf("%d%d",&st,&en);
        link[st].push_back(en);
        link[en].push_back(st);
    }
    for(int i=1;i<=n;i++){//对于每个没有去过的点,将其所有可以到达的点标为true,计数加一,重复
        if(color[i])continue;
        color[i]=true;
        dfs(i);
        cnt++;
    }
    cout<<cnt;
    return 0;
}
posted @ 2019-01-30 19:42  Ethan_Zhou  阅读(205)  评论(0编辑  收藏  举报