leetcode-Count Primes 以及python的小特性

题目大家都非常熟悉,求小于n的所有素数的个数。

 

自己写的python 代码老是通不过时间门槛,无奈去看了看大家写的code。下面是我看到的投票最高的code:

1
2
3
4
5
6
7
8
9
10
11
12
class Solution:
# @param {integer} n
# @return {integer}
def countPrimes(self, n):
    if n < 3:
        return 0
    primes = [True] * n
    primes[0] = primes[1] = False
    for i in range(2, int(n ** 0.5) + 1):
        if primes[i]:
            primes[i * i: n: i] = [False] * len(primes[i * i: n: i])
    return sum(primes)

 下面的code是有人针对上面这个code进行改进的code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution(object):
    def countPrimes(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n <= 2:
            return 0
 
        prime = [True] * n
        prime[:2] = [False, False]
        for base in xrange(2, int((n - 1) ** 0.5) + 1):
            if prime[base]:
                prime[base ** 2::base] = [False] * len(prime[base ** 2::base])
        return sum(prime)

 算法都是一样的,细节处有些不同,比方在对开头if的判断;对prime数组赋值的语句。这里我很好奇,这些改变到底有没有性能的提升,提升了多少。

下面是我的在python下得分析:

1
2
3
4
5
6
7
8
9
10
11
12
13
➜  ~  python -m timeit -s 'int(3 ** 0.5) + 1'
100000000 loops, best of 3: 0.0119 usec per loop
➜  ~  python -m timeit -s 'int(3 ** 0.5 + 1)' # better but not obiviosly
100000000 loops, best of 3: 0.0117 usec per loop
➜  ~  python -m timeit -s 'l = [False] * 1000' 'l[0] = l[1] = True' # better
10000000 loops, best of 3: 0.102 usec per loop
➜  ~  python -m timeit -s 'l = [False] * 1000' 'l[:2] = [True, True]'
10000000 loops, best of 3: 0.172 usec per loop
 
➜  ~  python -m timeit -s 'for i in range(100): i >= 2'
100000000 loops, best of 3: 0.0118 usec per loop
➜  ~  python -m timeit -s 'for i in range(100): i > 3' # better but not obiviosly
100000000 loops, best of 3: 0.0116 usec per loop

 所以总结下来:

1. 如果我们使用int()之后还要做算术运算,最好先把最终结果算出来,再进行int操作;

2. 如果我们想要对某个数列进行赋值,单个的进行赋值比使用[:]批量赋值要快(这个从实用性来看具体场合具体分析)

3. 如果我们进行大小判断,单纯的><比 >= <=要计算的更快一些。

posted @   Xander-Hang  阅读(1022)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
点击右上角即可分享
微信分享提示