CodeTON Round 5 (Div. 1 + Div. 2, Rated, Prizes!) A-E

比赛链接

A

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

bool solve() {
    int n, m;
    cin >> n >> m;
    ll suma = 0, sumb = 0;
    for (int i = 1, x;i <= n;i++) cin >> x, suma += x;
    for (int i = 1, x;i <= m;i++) cin >> x, sumb += x;
    if (suma > sumb) cout << "Tsondu" << '\n';
    else if (suma < sumb) cout << "Tenzing" << '\n';
    else cout << "Draw" << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

B

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

bool solve() {
    int n, x;
    cin >> n >> x;

    int sum = 0;
    for (int i = 0;i < 3;i++) {
        bool ok = 1;
        for (int j = 1;j <= n;j++) {
            int val;
            cin >> val;
            ok &= (x | val) == x;
            if (ok) sum |= val;
        }
    }

    if (sum == x) cout << "YES" << '\n';
    else cout << "NO" << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

C

题意

给定一个长为 \(n\) 的数组 \(a\) ,其中元素 \(a_i \in[1,n]\) 代表颜色。

现在有一种操作:选择两个颜色相同的不同位置 \(i,j\) ,然后删除 \([i,j]\) 这一段,删除操作会影响下标。

问最多能删除多少元素。

题解

知识点:线性dp。

\(f_{i}\) 表示 \([1,i]\) 最多能删除的元素个数,有转移方程:

\[f_i = \max\limits_{j:a_j = a_i} \{ f_{j-1} + i-j+1 \} \]

我们要优化这个转移,实际上我们只需要维护 \(\max\limits_{j:a_j = a_i} \{ f_{j-1} -j+1 \}\) 即可。

\(mx_j\) 表示在 \([1,i-1]\) 中颜色为 \(j\) 的所有位置 \(f_{j-1}-j+1\) 的最大值,每次求完 \(f_i\) 更新 \(mx_{a_i}\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

int a[200007];
int mx[200007];
int f[200007];
bool solve() {
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++) cin >> a[i], mx[i] = -1e9;
    for (int i = 1;i <= n;i++) {
        f[i] = max(f[i - 1], mx[a[i]] + i);
        mx[a[i]] = max(mx[a[i]], f[i - 1] - i + 1);
    }
    cout << f[n] << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

D

题意

\(n\) 个朋友,编号为 \(1\)\(n\) ,我们需要和他们玩最多 \(n^2\) 轮游戏,每轮游戏需要选择其中的一些人一起玩,并选择要玩多久,要求是:

  1. \(1\) 号朋友必须被选中。
  2. \(n\) 号朋友不能被选中。
  3. 所有人玩的时间需要遵守 \(m\) 条约束。

一条约束描述为三个整数 \(u,v,y\) ,表示朋友 \(u\) 或朋友 \(v\) 单独被选中玩的时间的总和不能超过 \(y\)

问在如此约束下,最多能玩多久,构造一个满足的方案,并给出这个方案要玩几轮,以及每轮游戏选中了哪些人玩了多久。

题解

知识点:差分约束,构造。

由于 \(n\) 一定不会被选中,而 \(1\) 必须被选中。因此我们考虑将点分成两个集合:

  1. 集合 \(A\) 表示能和 \(1\) 一起玩的。
  2. 集合 \(B\) 表示不能和 \(1\) 一起玩的。

初始时,集合 \(B\) 只有 \(n\) ,剩下的都在集合 \(A\)

显然,集合 \(A\) 的朋友是可以一起玩的,但玩到一定时间会因为和 \(n\) 的约束,有一些朋友就不能继续玩了,于是从集合 \(A\) 中移出放入集合 \(B\) ,剩下的继续玩。这个过程会逐步将朋友从 \(A\) 移到 \(B\)

实际上,我们考虑每个朋友 \(u\) 移入 \(B\) 的时间 \(T_u\) ,那么对于任意两个有约束的朋友 \(u,v\) 需要满足 \(|T_u -T_v| \leq y\) 。对于这个问题,我们将朋友看作点,约束看作带权无向边,那么就构造了一个差分约束系统,用最短路即可解决,起点是 \(n\)

我们在最短路过程中, \(dis_u\) 即为 \(T_u\) 。点一旦被确定距离,意味着这个时刻将点移出 \(A\) ,一旦 \(1\) 被确定就立刻结束。我们需要记录点被移出 \(A\) 的顺序,顺序上相邻的两个点的距离差,就是这轮还未被放进集合 \(B\) 的点玩的时间。

时间复杂度 \(O((n+m)\log m)\)

空间复杂度 \(O(n+m)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

vector<pair<int, int>> g[107];

int n, m;
ll dis[107];
bool vis[107];
struct node {
    int v;
    ll w;
    friend bool operator<(const node &a, const node &b) { return a.w > b.w; }
};
priority_queue<node> pq;
vector<int> ord;
void dijkstra() {
    for (int i = 1;i <= n;i++) dis[i] = 2e18, vis[i] = 0;
    dis[n] = 0;
    pq.push({ n,0 });
    while (!pq.empty()) {
        int u = pq.top().v;
        pq.pop();
        if (vis[u]) continue;
        ord.push_back(u);
        vis[u] = 1;
        if (vis[1]) break;
        for (auto [v, w] : g[u]) {
            if (vis[v]) continue;
            if (dis[u] + w < dis[v]) {
                dis[v] = dis[u] + w;
                pq.push({ v,dis[v] });
            }
        }
    }
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    for (int i = 1;i <= m;i++) {
        int u, v, w;
        cin >> u >> v >> w;
        g[u].push_back({ v,w });
        g[v].push_back({ u,w });
    }

    dijkstra();
    if (!vis[1]) {
        cout << "inf" << '\n';
        return 0;
    }
    cout << dis[1] << ' ' << ord.size() - 1 << '\n';
    for (int i = 1;i < ord.size();i++) {
        string s(n, '1');
        for (int j = 0;j < i;j++) s[ord[j] - 1] = '0';
        cout << s << ' ' << dis[ord[i]] - dis[ord[i - 1]] << '\n';
    }
    return 0;
}

E

题意

给定 \(k\) ,确定了平面直角坐标系中一条直线 \(x+y = k\)

给出 \(n\) 个点 \((x_i,y_i)\) ,满足坐标是整数且 \(0 \leq x_i,y_i,x_i+y_i <k\) ,每个点有一个权值 \(c_i\)

现在有两个操作:

  1. 删除一个点,花费其权值。
  2. 选择一个整数坐标位置 \((a,b)\) ,画出等腰直角三角形 \(x=a,y=b,x+y=k\) ,设其直角边长是 \(l\) ,以及一个常数 \(A\) ,那么删除这个等腰直角三角形内所有点,花费 \(lA\)

问删掉所有点最少花费是多少。

题解

知识点:线性dp,线段树。

容易发现,我们选择删除的三角形区域最终是不相交的,否则可以合并。同时,三角形可以通过其左上角和右下角的纵坐标唯一确定,那么一个三角形就可以映射到纵坐标上的一个线段。现在,问题就变成在纵坐标上选择一些不相交的线段,使得线段对应的三角形位置删除、其他位置单点删除后,花费最小。这是一个类似最小多个子段和的问题,因此我们可以从上到下dp解决。

为了方便,我们先将 \(y\) 坐标处理为 \(k-y\) ,这样点的坐标就从 \(0 \sim k-1\) 映射到 \(k\sim 1\)

\(f_{i}\) 表示删除纵坐标 \(\leq i\) 的点的最小花费,那么有转移方程:

\[f_i = \min\left\{ iA,f_{i-1} + \sum_{j:y_j = i}c_j ,\min\limits_{1 \leq j \leq i-1} \left\{ f_{j} + \sum_{k:\substack{0 \leq x_k \leq j-1\\ j+1 \leq y_k\leq i}}c_k + (i-j)A \right\}\right\} \]

其中:

  1. 第一项表示,从 \(i\) 行往上都用一个三角形删除。

  2. 第二项表示,第 \(i\) 行全都单点删除。

  3. 第三项表示,从 \(i\) 行往上到 \(j+1\) 行用一个三角形删除,从 \(j\) 行往上不变。

    但这导致了,坐标满足 \(0 \leq x \leq j-1, j+1 \leq y\leq i\) 的点没有考虑到,而这些点不可能被三角形覆盖,因此全都选择单点删除的花费。

考虑优化第三项。我们用线段树维护 \(j \in[1,i-1]\)

\[f_{j} + \sum_{k:\substack{0 \leq x_k \leq j-1\\ j+1 \leq y_k\leq i}}c_k - jA \]

最小值。其中,求和项可以每层区间加递推。因为区间 \([1,i-1]\) 可能是导致 \([1,0]\) 不合法区间,取默认值为 \(0\) 即可,此时第三项结果为 \(iA\) ,不会产生错误答案。

每次最后我们需要将 \(f_[i]-iA\) 加到线段树位置 \(i\) 上。

最后,答案即为 \(f[k]\)

当然,为了避免不合法区间的出现,可以选择将第二项放到线段树的位置 \(i\) 上,最后更新的时候取 \(f[i]\) 和线段树位置 \(i\) 的最小值更新即可。实际上,线段树也能维护整个第三项,默认值设为无穷大即可,但更新的时候会有点麻烦,要把新的值覆盖无穷大的值。

这两个实现虽然不会产生不合法的区间,但区间加实现常数会大一点,可以选择专门写一个函数操作。

另一个类似的思路:假设都用单点删除,去dp将一部分改为三角形删除的贡献改变量的最小值(是负的),最后用单点删除的总和加上这个最小值即可。

时间复杂度 \(O((n+k) \log k)\)

空间复杂度 \(O(n+k)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template<class T, class F>
class SegmentTreeLazy {
    int n;
    vector<T> node;
    vector<F> lazy;

    void push_down(int rt) {
        node[rt << 1] = lazy[rt](node[rt << 1]);
        lazy[rt << 1] = lazy[rt](lazy[rt << 1]);
        node[rt << 1 | 1] = lazy[rt](node[rt << 1 | 1]);
        lazy[rt << 1 | 1] = lazy[rt](lazy[rt << 1 | 1]);
        lazy[rt] = F();
    }

    void update(int rt, int l, int r, int x, int y, F f) {
        if (r < x || y < l) return;
        if (x <= l && r <= y) return node[rt] = f(node[rt]), lazy[rt] = f(lazy[rt]), void();
        push_down(rt);
        int mid = l + r >> 1;
        update(rt << 1, l, mid, x, y, f);
        update(rt << 1 | 1, mid + 1, r, x, y, f);
        node[rt] = node[rt << 1] + node[rt << 1 | 1];
    }

    T query(int rt, int l, int r, int x, int y) {
        if (r < x || y < l) return T();
        if (x <= l && r <= y) return node[rt];
        push_down(rt);
        int mid = l + r >> 1;
        return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
    }

public:
    SegmentTreeLazy(int _n = 0) { init(_n); }
    SegmentTreeLazy(const vector<T> &src) { init(src); }

    void init(int _n) {
        n = _n;
        node.assign(n << 2, T());
        lazy.assign(n << 2, F());
    }
    void init(const vector<T> &src) {
        init(src.size() - 1);
        function<void(int, int, int)> build = [&](int rt, int l, int r) {
            if (l == r) return node[rt] = src[l], void();
            int mid = l + r >> 1;
            build(rt << 1, l, mid);
            build(rt << 1 | 1, mid + 1, r);
            node[rt] = node[rt << 1] + node[rt << 1 | 1];
        };
        build(1, 1, n);
    }

    void update(int x, int y, F f) { update(1, 1, n, x, y, f); }

    T query(int x, int y) { return query(1, 1, n, x, y); }
};

struct T {
    int mi = 0;
    friend T operator+(const T &a, const T &b) { return { min(a.mi,b.mi) }; }
};

struct F {
    int add = 0;
    T operator()(const T &x) { return { x.mi + add }; }
    F operator()(const F &g) { return { g.add + add }; }
};

vector<pair<int, int>> pos[200007];
int f[200007];

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, k, A;
    cin >> n >> k >> A;
    for (int i = 1;i <= n;i++) {
        int x, y, c;
        cin >> x >> y >> c;
        pos[k - y].push_back({ x,c });
    }

    SegmentTreeLazy<T, F> sgt(k);
    for (int i = 1;i <= k;i++) {
        f[i] = f[i - 1];
        for (auto [x, c] : pos[i]) sgt.update(x + 1, i - 1, { c }), f[i] += c;
        f[i] = min({ f[i],i * A, sgt.query(1, i - 1).mi + i * A });
        sgt.update(i, i, { f[i] - i * A });
    }
    cout << f[k] << '\n';
    return 0;
}
posted @ 2023-07-08 13:02  空白菌  阅读(234)  评论(0编辑  收藏  举报