NC23054 华华开始学信息学

题目链接

题目

题目描述

因为上次在月月面前丢人了,所以华华决定开始学信息学。十分钟后,他就开始学树状数组了。这是一道树状数组的入门题:

给定一个长度为 \(N\) 的序列 \(A\) ,所有元素初值为 \(0\) 。接下来有 \(M\) 次操作或询问:
操作:输入格式:1 D K,将 \(A_D\) 加上 \(K\)
询问:输入格式:2 L R,询问区间和,即 \(\sum_{i=L}^{R}A_i\)

华华很快就学会了树状数组并通过了这道题。月月也很喜欢树状数组,于是给华华出了一道进阶题:
给定一个长度为 \(N\) 的序列 \(A\) ,所有元素初值为 \(0\) 。接下来有 \(M\) 次操作或询问:
操作:输入格式:1 D K,对于所有满足 \(1\le i\le N\) 且 $i\equiv0 \pmod D $ 的 \(i\) ,将 \(A_i\) ​加上 \(K\)
询问:输入格式:2 L R,询问区间和,即 \(\sum_{i=L}^{R}A_i\)
华华是个newbie,怎么可能会这样的题?不过你应该会吧。

输入描述

第一行两个正整数 \(N\)\(M\) 表示序列的长度和操作询问的总次数。
接下来M行每行三个正整数,表示一个操作或询问。

输出描述

对于每个询问,输出一个非负整数表示答案。

示例1

输入

10 6
1 1 1
2 4 6
1 3 2
2 5 7
1 6 10
2 1 10

输出

3
5
26

备注

\(1\le N,M\le10^5\)\(1\le D\le N\)\(1\le L\le R\le N\)\(1\le K \le 10^8\)

题解

知识点:树状数组,根号分治。

显然,这道题的修改并不能转化为可懒标记的区间修改,也没有很好的方法转化为单点修改。

我们可以考虑暴力优化的一种,根号分治。将修改操作的 \(D\) 分为两部分,按阈值 \(B\) 划分:

  1. \(D \leq B\) 时,采用标记法, 用 \(add\) 数组表示某个 \(D\) 加了多少,复杂度 \(O(1)\)
  2. \(D > B\) 时,采用暴力修改法,倍增修改树状数组 \(x \equiv 0 \pmod D\) 的点,复杂度 \(O\left( \dfrac{n}{B} \log n \right)\)

修改总体复杂度为 \(O\left( \dfrac{n}{B} \log n \right)\)

同时,查询操作也要随之改变:

  1. \(D \leq B\) 部分,暴力累和每个 \(D\) 的贡献,即 \(\displaystyle \sum_{i=1}^B add_i \cdot \left( \left \lfloor \frac{r}{i} \right \rfloor - \left \lfloor \frac{l-1}{i} \right \rfloor \right)\) ,复杂度 \(O(B)\)
  2. \(D>B\) 部分,直接查询树状数组即可,复杂度 \(O(\log n)\)

查询总体复杂度为 \(O(B + \log n)\)

我们尝试平衡查询和修改的复杂度。假设 \(B\) 能使 \(\log n\) 被忽略,则需要满足 $ \dfrac{n}{B} \log n = B$ ,解得 \(B = \sqrt{n \log n}\) 。因此, \(B = \sqrt{n \log n}\) 是我们所需要的阈值,其能使总体复杂度为 \(O(\sqrt{n \log n})\)

实际上,这道题用理论最优阈值时间不是最优的,用 \(B = \sqrt n\) 快将近一倍,可能由于数据的 \(D\) 普遍较小,使得查询代价上升较明显。

这里采用 \(B = \sqrt n\) 阈值。

时间复杂度 \(O(m\sqrt{n} \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template<class T>
class Fenwick {
    int n;
    vector<T> node;
public:
    Fenwick(int _n = 0) { init(_n); }

    void init(int _n) {
        n = _n;
        node.assign(n + 1, T::e());
    }

    void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; }

    T query(int x) {
        T ans = T::e();
        for (int i = x;i >= 1;i -= i & -i) ans += node[i];
        return ans;
    }

    T query(int l, int r) { return query(r) - query(l - 1); }
};

struct T {
    ll sum;
    static T e() { return { 0 }; }
    T &operator+=(const T &x) { return sum += x.sum, *this; }
    friend T operator-(const T &a, const T &b) { return { a.sum - b.sum }; }
};

ll add[100007];

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m;
    cin >> n >> m;
    Fenwick<T> fw(n);
    for (int i = 1;i <= m;i++) {
        int op;
        cin >> op;
        if (op == 1) {
            int d, k;
            cin >> d >> k;
            if (d * d <= n) add[d] += k;
            else for (int i = d;i <= n;i += d) fw.update(i, { k });
        }
        else {
            int l, r;
            cin >> l >> r;
            ll ans = fw.query(l, r).sum;
            for (int i = 1;i * i <= n;i++) ans += add[i] * (r / i - (l - 1) / i);
            cout << ans << '\n';
        }
    }
    return 0;
}
posted @ 2023-05-02 02:50  空白菌  阅读(122)  评论(0编辑  收藏  举报