NC51100 A Simple Problem with Integers
题目
题目描述
You have N integers, \(A_1, A_2, ... , A_N\) .You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
输入描述
The first line contains two numbers N and Q. \(1 \leq N,Q \leq 100000\) .
The second line contains N numbers, the initial values of \(A_1, A_2, ... , A_N\) \(-1000000000 \leq A_i \leq 1000000000\) .
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of \(A_a, A_{a+1}, ... , A_b\) , \(10000 \leq c \leq 10000\) .
"Q a b" means querying the sum of \(A_a, A_{a+1}, ... , A_b\) .
输出描述
You need to answer all Q commands in order. One answer in a line.
示例1
输入
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
输出
4
55
9
15
备注
The sums may exceed the range of 32-bit integers.
题解
知识点:线段树。
线段树懒标记实现区间修改的板子题。
时间复杂度 \(O((n+q)\log n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
struct T {
int len;
ll sum;
static T e() { return { 0,0 }; }
friend T operator+(const T &a, const T &b) { return { a.len + b.len, a.sum + b.sum }; }
};
struct F {
ll add;
static F e() { return { 0 }; }
T operator()(const T &x) { return { x.len,x.sum + add * x.len }; }
F operator()(const F &g) { return { g.add + add }; }
};
template<class T, class F>
class SegmentTreeLazy {
int n;
vector<T> node;
vector<F> lazy;
void push_down(int rt) {
node[rt << 1] = lazy[rt](node[rt << 1]);
lazy[rt << 1] = lazy[rt](lazy[rt << 1]);
node[rt << 1 | 1] = lazy[rt](node[rt << 1 | 1]);
lazy[rt << 1 | 1] = lazy[rt](lazy[rt << 1 | 1]);
lazy[rt] = F::e();
}
void update(int rt, int l, int r, int x, int y, F f) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt] = f(node[rt]), lazy[rt] = f(lazy[rt]), void();
push_down(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, f);
update(rt << 1 | 1, mid + 1, r, x, y, f);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
}
T query(int rt, int l, int r, int x, int y) {
if (r < x || y < l)return T::e();
if (x <= l && r <= y) return node[rt];
push_down(rt);
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
}
public:
SegmentTreeLazy(int _n = 0) { init(_n); }
SegmentTreeLazy(const vector<T> &src) { init(src); }
void init(int _n) {
n = _n;
node.assign(n << 2, T::e());
lazy.assign(n << 2, F::e());
}
void init(const vector<T> &src) {
assert(src.size());
init(src.size() - 1);
function<void(int, int, int)> build = [&](int rt, int l, int r) {
if (l == r) return node[rt] = src[l], void();
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
};
build(1, 1, n);
}
void update(int x, int y, F f) { update(1, 1, n, x, y, f); }
T query(int x, int y) { return query(1, 1, n, x, y); }
};
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, q;
cin >> n >> q;
vector<T> a(n + 1);
for (int i = 1;i <= n;i++) {
int x;
cin >> x;
a[i] = { 1,x };
}
SegmentTreeLazy<T, F> sgt(a);
while (q--) {
char op;
int a, b;
cin >> op >> a >> b;
if (op == 'C') {
int c;
cin >> c;
sgt.update(a, b, { c });
}
else cout << sgt.query(a, b).sum << '\n';
}
return 0;
}
本文来自博客园,作者:空白菌,转载请注明原文链接:https://www.cnblogs.com/BlankYang/p/17358441.html