NC51178 没有上司的舞会
题目
题目描述
Ural大学有N名职员,编号为1~N。
他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。
每个职员有一个快乐指数,用整数 \(Hi\) 给出,其中 \(1\leq i\leq N\) 。
现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。
在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。
输入描述
第一行一个整数N。
接下来N行,第 i 行表示 i 号职员的快乐指数Hi。
接下来N-1行,每行输入一对整数L, K,表示K是L的直接上司。
最后一行输入0,0。
输出描述
输出最大的快乐指数。
示例1
输入
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出
5
备注
\(1\leq N\leq 6000\)
\(−128\leq H_i\leq 127\)
题解
知识点:树形dp。
题目要求选出独立的点,即不与别的点相邻,使得权值和最大(最大独立集)。
以 \(1\) 为根,设 \(dp[u][0/1]\) 表示以 \(u\) 为根节点的子树不选或选后的最大快乐度。转移方程为:
\[\left \{
\begin{array}{l}
dp[u][1] = \sum dp[v_i][1]\\
dp[u][0] = \sum \max (dp[v_i][0],dp[v_i][1])
\end{array}
\right .
\]
因为 \(u\) 不选的时候,子节点选不选都可以;选的时候,子节点只能不选。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
int H[6007], dp[6007][10];
vector<int> g[5007];
void dfs(int u, int fa) {
for (auto v : g[u]) {
if (v == fa) continue;
dfs(v, u);
dp[u][1] += dp[v][0];
dp[u][0] += max(dp[v][0], dp[v][1]);
}
dp[u][1] += H[u];
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> H[i];
for (int i = 1;i <= n - 1;i++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1, 0);
cout << max(dp[1][1], dp[1][0]) << '\n';
return 0;
}
本文来自博客园,作者:空白菌,转载请注明原文链接:https://www.cnblogs.com/BlankYang/p/16617255.html