NC14701 取数游戏2

题目链接

题目

题目描述

给定两个长度为n的整数列A和B,每次你可以从A数列的左端或右端取走一个数。假设第i次取走的数为ax,则第i次取走的数的价值vi=bi⋅ax,现在希望你求出∑vi的最大值。

输入描述

第一行一个数T,表示有T组数据。
对于每组数据,第一行一个整数n,
接下来两行分别给出A数列与B数列。

输出描述

每一组数据输出一行,最大的∑vi。

示例1

输入

2
2
1 1000
2 1
5
1 3 5 2 4
1 2 3 4 5

输出

2001
52

说明

对于第二个样例,
第一次从左边取走a1,v1=a1⋅b1=1,
第二次从左边取走a2,v2=a2⋅b2=6,
第三次从右边取走a5,v3=a5⋅b3=12,
第四次从右边取走a4,v4=a4⋅b4=8,
第五次取走剩下的a3,v5=a3⋅b5=25。
总价值∑vi=1+6+12+8+25=52

备注

\(T≤10\)
\(1≤n≤10^3\)
\(1≤a_i,b_i≤10^3\)

题解

知识点:区间dp。

这类题有个很显然的特征,即每次只能选剩余的左右两端的数,可以考虑区间dp逆推整个过程,从只剩一个数作为终点逆推回原来的数列,然后取其中过程中的最大值即可。

\(dp[i][j]\) 为用区间 \([i,j]\) 里的数作为第 \([n-(j-i),n]\) 个数时能够到达的最大值。有转移方程:

\[dp[i][j] = \max (dp[i + 1][j] + a[i] \cdot b[n - l + 1], dp[i][j - 1] + a[j] \cdot b[n - l + 1]) \]

表示选左端点或者右端点作为第 \(n-l+1\) 个数。

时间复杂度 \(O(n^2)\)

空间复杂度 \(O(n^2)\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

int a[1007], b[1007], dp[1007][1007];

bool solve() {
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++) cin >> a[i];
    for (int i = 1;i <= n;i++) cin >> b[i];
    for (int i = 1;i <= n;i++) dp[i][i] = a[i] * b[n];
    for (int l = 2;l <= n;l++) {
        for (int i = 1, j = l;j <= n;i++, j++) {
            dp[i][j] = max(dp[i + 1][j] + a[i] * b[n - l + 1], dp[i][j - 1] + a[j] * b[n - l + 1]);
        }
    }
    cout << dp[1][n] << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}
posted @ 2022-08-15 00:39  空白菌  阅读(63)  评论(0编辑  收藏  举报