NC16663 [NOIP2004]合并果子
题目
题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入描述
输入包括两行,第一行是一个整数 \(n(1\leq n\leq 10000)\) ,表示果子的种类数。第二行包含 \(n\) 个整数,用空格分隔,第 \(i\) 个整数 \(a_i(1 \leq a_i \leq 20000)\)是第 \(i\) 种果子的数目。
输出描述
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于\(2^{31}\)。
示例1
输入
3
1 2 9
输出
15
备注
对于30%的数据,保证有n<=1000:
对于50%的数据,保证有n<=5000;
对于全部的数据,保证有n<=10000。
题解
方法一
知识点:队列,贪心。
此题用优先队列能很容易解答,复杂度是 \(O(n\log n)\) 。这里用队列实现,利用了合并方式固定的条件,实现了一组单调的队列,而不需要用 \(\log n\) 花费排序,循环的复杂度是 \(O(n)\),包括开始排序的总复杂度是 \(O(n \log n)\) ,但常数比优先队列小很多。
显然,因为合并次数是固定的,先合并的果堆重复计算次数就多,所以选最小的两堆合并,因此先从小到大排序,全部入队后开始合并。
注意到,从小到大选取合并出的新果堆必然是递增的,因此可以考虑用一个新队列存放新的果堆,然后每次在两个队头的选两次最小值。因为最小的两个果堆,无论从哪个取的,都一定比之前两个大,所以所有新果堆都可以放在新队列队尾,而不破坏新队列里的递增性。
最后循环 \(n\) 次并累加即可。
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
方法二
知识点:优先队列,贪心。
每次选最小两个,可以用优先队列维护,常数高但方便。
这道题可以熟悉一下优先队列的用法,改变比较规则有 greater<>
和 less<>
两个仿函数,前者是小根堆后者是大根堆,默认是大根堆,也可以自定义仿函数,或者直接在自定义类型里面重载不等号。
要注意的,优先队列的比较规则与 sort
不同,它是满足比较规则(返回true)则是优先级低的排在队后,不满足的优先级高在前面,所以自定义时候要注意,因此用 less<>
时候要重载小于号,用 greater<>
时候要重载大于号,但是一般重载的时候直接用默认的 less<>
重载小于就行了。
其他的容器也是一样的,比如 \(set\) ,\(map\) ,\(multiset\) 等等。
重载方法:
struct node{
int a;
bool operator<(const node &x)const{//注意要const,也可以写成友元函数
return a>x.a;///满足大于的优先级低排后面,所以这是小根堆
}
}
仿函数方法:
struct cmp{
bool operator()(const node &a,const node &b)const{//重载括号只能是成员函数
return a.a>b.a;
}
}
时间复杂度 \(O(n \log n)\)
空间复杂度 \(O(n)\)
代码
方法一
#include <bits/stdc++.h>
using namespace std;
int a[10007];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 0;i < n;i++) cin >> a[i];
sort(a, a + n);
queue<int> q1, q2;
for (int i = 0;i < n;i++) q1.push(a[i]);
int ans = 0;
for (int i = 0;i < n;i++) {
int sum = 0;
for (int j = 1;j <= 2;j++) {
if (q2.empty() || !q1.empty() && q1.front() < q2.front()) {
sum += q1.front();
q1.pop();
}
else {
sum += q2.front();
q2.pop();
}
}
ans += sum;
q2.push(sum);
}
cout << ans << '\n';
return 0;
}
方法二
#include <bits/stdc++.h>
using namespace std;
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
priority_queue<int, vector<int>, greater<int>> pq;
for (int i = 0, tmp;i < n;i++) cin >> tmp, pq.push(tmp);
int ans = 0;
for (int i = 0;i < n - 1;i++) {
int sum = pq.top();
pq.pop();
sum += pq.top();
pq.pop();
pq.push(sum);
ans += sum;
}
cout << ans << '\n';
return 0;
}
本文来自博客园,作者:空白菌,转载请注明原文链接:https://www.cnblogs.com/BlankYang/p/16436731.html