12 2022 档案
摘要:论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup论文作者:Huimin Zeng, Zhenrui Yue, Ziyi
阅读全文
摘要:论文信息 论文标题:Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning论文作者:Hongzhan Lin, Jing Ma, Liangliang Chen, Z
阅读全文
摘要:论文信息 论文标题:Contrastive Domain Adaptation for Early Misinformation Detection: A Case Study on COVID-19论文作者:Zhenrui Yue, Huimin Zeng, Ziyi Kou, Lanyu Sha
阅读全文
摘要:数据漂移的分类 第一种 叫做特征漂移或者是协变量漂移,它指的是在 $p(y|x)$ 不变的情况下,$p(x)$ 变化的情况。 比如我训练模型的时候用的主要是中年人的数据,但是在线上的主要用户却是青少年居多,那么很可能我没有那么好的数据 第二种叫做 label shift 也经常被叫做 prior s
阅读全文
摘要:论文信息 论文标题:Hierarchical Multi-head Attentive Network for Evidence-aware Fake News Detection论文作者:Nguyen Vo, Kyumin Lee论文来源:2021 EACL论文地址:download 论文代码:d
阅读全文
摘要:论文信息 论文标题:Evidence-aware Fake News Detection with Graph Neural Networks论文作者:Weizhi Xu, Junfei Wu, Qiang Liu, Shu Wu, Liang Wang论文来源:2022 WWW论文地址:downl
阅读全文
摘要:论文信息 论文标题:Cross-Domain Few-Shot Graph Classification论文作者:Kaveh Hassani论文来源:AAAI 2023论文地址:download 论文代码:download 1 Introduction 2 Method 框架: 2.1 Augmen
阅读全文
摘要:论文信息 论文标题:Rumor detection based on propagation graph neural network with attention mechanism论文作者:Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong
阅读全文
摘要:论文信息 论文标题:Embracing Domain Differences in Fake News: Cross-domain Fake News Detection using Multimodal Data论文作者:Amila Silva, Ling Luo, Shanika Karunas
阅读全文
摘要:论文信息 论文标题:Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer论文作者:Qiong Nan, Danding Wang, Yongchun Zhu, Qiang
阅读全文
摘要:论文信息 论文标题:Probabilistic Contrastive Learning for Domain Adaptation论文作者:Junjie Li, Yixin Zhang, Zilei Wang, Keyu Tu论文来源:aRxiv 2022论文地址:download 论文代码:do
阅读全文
摘要:论文信息 论文标题:Research on the application of contrastive learning in multi-label text classification论文作者:Nankai Lin, Guanqiu Qin, Jigang Wang, Aimin Yang,
阅读全文
摘要:论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihua Chen, Pichao Wang, Fan Wang, Hao Li, Rong Jin论文来
阅读全文