摘要:
线性回归的从零开始实现 在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。 首先,导入本节中实验所需的包或模块,其中的 matplotlib 包可用于作图,且设置成嵌入显示。 阅读全文
摘要:
线性回归理论部分《机器学习——线性回归》 1 线性回归 线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题 阅读全文
摘要:
1 批量梯度下降 在经典的随机梯度下降算法(批量梯度下降)中,迭代下降公式是 $x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)$ 以一元线性回归的目标函数为例 $\sum \limits _{i=1}^{n}\left(a x_{i}+b-y_{i}\ 阅读全文