Note:[ wechat:Y466551 | 付费咨询,非诚勿扰 ]
论文信息
论文标题:ECACL: A Holistic Framework for Semi-Supervised Domain Adaptation
论文作者:Kai Li, Chang Liu, Handong Zhao, Yulun Zhang, Y. Fu
论文来源:2021 ICCV
论文地址:download
论文代码:download
视屏讲解:click
1 介绍
出发点:半监督领域自适应(SSDA)是一个实用但尚未被研究的研究课题;
2 方法
2.1 模型框架
2.2 类对齐
基于原型损失的方法
使用目标域带标记数据计算原型:
使用上述得到的目标原型,计算源域样本原型分布:
然后,可计算出所有源样本的原型损失:
基于三重损失的方法
目的:使同一类的跨域样本应该比来自不同类[16]的样本具有更高的相似性。
具体来说,对于目标域带标记样本 ,从 中发现属于 类,但最不相似的源样本 。同时,也从 中找到不属于 类,但最相似的样本 。三联体 ,将以下三联体损失优化为:
2.3 域对齐与数据增强
增强的类对齐
最近的研究表明,创建高度扰动图像的强增强为监督学习[6,7]带来了显著的性能提高。因此, 均基于随机强数据增强样本计算得出。
一致性对齐
对于每个未标记的目标样本 ,应用弱增强 和强增强 :
优化以下目标函数:
其中,, 代表着交叉熵;
2.4 训练目标
总体学习目标是 UDA损失、增强的类对齐损失和一致性对齐损失的加权组合:
其中, 或者 ;
算法:
3 实验
分类
因上求缘,果上努力~~~~ 作者:别关注我了,私信我吧,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/17636205.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?
2022-08-16 论文解读(SEP)《Structural Entropy Guided Graph Hierarchical Pooling》
2020-08-16 剑指 Offer 30. 包含min函数的栈