迁移学习(EADA)《Unsupervised Energy-based Adversarial Domain Adaptation for Cross-domain Text Classification》

论文信息

论文标题:Unsupervised Energy-based Adversarial Domain Adaptation for Cross-domain Text Classification
论文作者:Han Zou, Jianfei Yang, Xiaojian Wu
论文来源:ACL 2021
论文地址:download 
论文代码:download
引用次数:

1 前言

   Energy-based Generative Adversarial Network 结合 DANN 的模型;

2 方法

  整体框架:

  

  $\text{DANN}$ 训练目标:

    $\begin{array}{l}\underset{G_{f}, G_{y}}{\text{min}} \quad \mathcal{L}_{y}\left(\mathbf{X}_{s}, Y_{s}\right)-\gamma \mathcal{L}_{f}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right) \\\underset{G_{d}}{\text{min}} \quad \mathcal{L}_{d}\left(\mathbf{X}_{s}, \mathbf{X}_{t}\right)\end{array}$

   本文训练目标:

    $\begin{array}{l}\underset{G_{f}, G_{y}}{\text{min}} \quad \mathcal{L}_{C E}\left(\mathbf{X}_{s}, Y_{s}\right)+\gamma \mathcal{L}_{A E}\left(\mathbf{X}_{\mathbf{t}}\right), \\\underset{G_{a}}{\text{min}}\quad \mathcal{L}_{A E}\left(\mathbf{X}_{\mathbf{s}}\right)+\max \left(0, m-\mathcal{L}_{A E}\left(\mathbf{X}_{\mathbf{t}}\right)\right)\end{array}$

    $\mathcal{L}_{A E}\left(\mathbf{x}_{i}\right)=\left\|G_{a}\left(G_{f}\left(\mathbf{x} ; \theta_{f}\right) ; \theta_{a}\right)-\mathbf{x}_{i}\right\|_{2}^{2}$

 

posted @ 2023-03-18 17:51  图神经网络  阅读(84)  评论(0编辑  收藏  举报
Live2D