论文解读(MaskGAE)《MaskGAE: Masked Graph Modeling Meets Graph Autoencoders》
论文信息
论文标题:MaskGAE: Masked Graph Modeling Meets Graph Autoencoders
论文作者:Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian......
论文来源:2022,arXiv
论文地址:download
论文代码:download
1 Introduction
MAE 在图上的应用。
2 Related work and Motivation
2.1 GAE
GAEs采用了经典的编码器-解码器框架,旨在通过优化以下二进制交叉熵损失,从编码图的低维表示中进行解码:
$\mathcal{L}_{\mathrm{GAEs}}=-\left(\frac{1}{\left|\mathcal{E}^{+}\right|} \sum\limits _{(u, v) \in \mathcal{E}^{+}} \log h_{\omega}\left(z_{u}, z_{v}\right)+\frac{1}{\left|\mathcal{E}^{-}\right|} \sum\limits _{\left(u^{\prime}, v^{\prime}\right) \in \mathcal{E}^{-}} \log \left(1-h_{\omega}\left(z_{u^{\prime}}, z_{v^{\prime}}\right)\right)\right)$
其中,$\mathcal{z}$ 代表低维隐表示,$f_{\theta}$ 代表参数为 $\theta$ 的 GNN encoder,$h_{\omega}$ 代表参数为 $\omega$ 的 GNN decoder,$\mathcal{E}^{+}$ 代表 positive edges ,$\mathcal{E}^{-}$ 代表 negative edges 。
2.2 Motivation
按照互信息的思想:希望最大化 k-hop 节点对子图之间的一致性,但是伴随着 $K$ 值变大,过平滑的问题越发明显,此时子图大小对节点表示的学习不利。因此有:
分析了一堆废话................
后面呢,必然出现解决过平滑的策略。
Recall:解决过平湖的策略
-
- 残差;
- 谱图理论;
- 多尺度信息;
- 边删除;
3 Method:MaskGAE
出发点:MGM
$\mathcal{G}_{\text {mask }} \cup \mathcal{G}_{\text {vis }}=\mathcal{G}$
$\mathcal{G}_{\text {mask }}= \left(\mathcal{E}_{\text {mask }}, \mathcal{V}\right)$
3.1 Masking strategy
Edge-wise random masking $(\mathcal{T}_{\text {edge }}$
$\mathcal{E}_{\text {mask }} \sim \operatorname{Bernoulli}(p)$
Path-wise random masking $(\mathcal{T}_{\text {path}}$
$\mathcal{E}_{\text {mask }} \sim \operatorname{Random} \operatorname{Walk}\left(\mathcal{R}, n_{\text {walk }}, l_{\text {walk }}\right)$
其中,$\mathcal{R} \subseteq \mathcal{V}$ 是从图中采样的一组根节点,$n_{\text {walk }}$ 为每个节点的行走次数,$l_{\text {walk }}$ 为行走长度。
在这里,我们遵循度分布,抽样了一个节点的子集(例如,50%),没有替换作为根节点 $\mathcal{R}$。这样的采样也可以防止图中存在的潜在的长尾偏差(即,更多的屏蔽边是那些属于高度节点的边)。
3.2 Encoder
- GCN Encoder
- SAGE Encoder
- GAT Encoder
3.2 Decoder
$h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(z_{i}^{\mathrm{T}} z_{j}\right)$
$h_{\omega}\left(z_{i}, z_{j}\right)=\operatorname{Sigmoid}\left(\operatorname{MLP}\left(z_{i} \circ z_{j}\right)\right)$
$g_{\phi}\left(z_{v}\right)=\operatorname{MLP}\left(z_{v}\right)$
3.3 Learning objective
损失函数包括:
-
- Reconstruction loss:计算的是掩码边 $\mathcal{E}^{+}=\mathcal{E}_{\text {mask }}$ 的重构损失;
- Regression loss:衡量的是节点度的预测与掩蔽图中原始节点度的匹配程度:
$\mathcal{L}_{\mathrm{deg}}=\frac{1}{|\mathcal{V}|} \sum\limits _{v \in \mathcal{V}}\left\|g_{\phi}\left(z_{v}\right)-\operatorname{deg}_{\text {mask }}(v)\right\|_{F}^{2}$
因此,总体损失为:
$\mathcal{L}=\mathcal{L}_{\mathrm{GAEs}}+\alpha \mathcal{L}_{\mathrm{deg}}$
4 Experiments
5 Conclusion
因上求缘,果上努力~~~~ 作者:图神经网络,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/16514109.html