论文解读(GCC)《Graph Contrastive Clustering》
论文信息
论文标题:Graph Contrastive Clustering
论文作者:Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin, Xian-Sheng Hua
论文来源:2021, ICCV
论文地址:download
论文代码:download
1 Introduction
研究方向:解决传统的 URL 没有考虑到类别信息和聚类目标的问题。
传统对比学习和本文研究的对比:
- 传统方式:图及其增强视图为正对;
- 本文:一个聚类簇中的视图也应共享相似的特征表示;
2 Method
2.1 Task
将 $N$ 个未标记图像通过一个基于CNN 的网络聚类分配为 $K$ 个不同的类:
$\ell_{i}=\arg \underset{j}{\text{max}} \left(p_{i j}\right), 1 \leq j \leq K$
2.2 Graph Contrastive (GC)
Symmetric normalized Laplacian:
$L^{\mathrm{sym}}:=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2}$
即:
$L_{i, j}^{s y m}:=\left\{\begin{array}{ll}1 & \text { if } i=j \text { and } \operatorname{deg}\left(v_{i}\right) \neq 0 \\-\frac{1}{\sqrt{\operatorname{deg}\left(v_{i}\right) \operatorname{deg}\left(v_{j}\right)}} & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} \\0 & \text { otherwise. }\end{array}\right.$
【着重观察:$L_{i j}=-\frac{A_{i j}}{\sqrt{d_{i} d_{j}}}, i \neq j$】
社区检测中的基本思想: 同一社区中特征表示的相似性应该大于社区之间的相似性。
图上的基本思想:邻居之间的表示相似性应该大于非邻居的相似性。
社区内(intra-community)的相似性定义为:
$\mathcal{S}_{i n t r a}=\sum\limits _{L_{i j}<0}-L_{i j} S\left(x_{i}, x_{j}\right)$
社区间(inter-community)的相似性定义为:
$\mathcal{S}_{\text {inter }}=\sum\limits _{L_{i j}=0} S\left(x_{i}, x_{j}\right)$
$S\left(x_{i}, x_{j}\right)$ 是相似性函数,本文设置为:
$S\left(x_{i}, x_{j}\right)=e^{-\left\|x_{i}-x_{j}\right\|_{2}^{2} / \tau} $
其中,$\left\|x_{i}-x_{j}\right\|_{2}^{2}=\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2 x_{i} \cdot x_{j}=2-2x_ix_j$ 【通常 表示 $\left\|z_{i}\right\|_{2}=1$ (经过正则化)】
本文的相似性函数是 $S\left(x_{i}, x_{j}\right)=e^{x_{i} \cdot x_{j} / \tau}$ 。
然后,计算 GC 的总损失为:
$\mathcal{L}_{G C}=-\frac{1}{N} \sum\limits _{i=1}^{N} \log \left(\frac{\sum\limits_{L_{i j}<0}-L_{i j} S\left(x_{i}, x_{j}\right)}{\sum\limits_{L_{i j}=0} S\left(x_{i}, x_{j}\right)}\right)$
最小化 $\mathcal{L}_{G C}$ 可以同时增加社区内总相似度,降低社区间总相似度,从而提高可分离性,得到学习得到的特征表示与图结构一致的结果。
2.3 Framework
框架如下:
2.3.1 Graph Construction
深度模型在训练过程中经常波动,一个 epoch 的特征表示可能有较大的偏差,本文采用移动平均去解决这个问题。
假设 $\Phi_{\theta}^{(t)}$ 代表着模型,第 $t$ 个 epoch 的特征表示 $Z^{(t)}= \left(z_{1}^{(t)}, \cdots, z_{N}^{(t)}\right)=\left(\Phi_{\theta}^{(t)}\left(I_{1}\right), \cdots, \Phi_{\theta}^{(t)}\left(I_{N}\right)\right) $ ,采用的移动平均如下:
${\large \bar{z}_{i}^{(t)}=\frac{(1-\alpha) \bar{z}_{i}^{(t-1)}+\alpha z_{i}^{(t)}}{\left\|(1-\alpha) \bar{z}_{i}^{(t-1)}+\alpha z_{i}^{(t)}\right\|_{2}}} , i=1, \cdots, N,$
其中 $\alpha$ 是权衡参数,$\bar{z}_{i}^{(0)}=z_{i}^{(0)}$ 。
然后根据特征表示构造 KNN 图,并计算邻接矩阵:
$A_{i j}^{(t)}=\left\{\begin{array}{ll}1, & \text { if } \bar{z}_{j}^{(t)} \in \mathcal{N}^{k}\left(\bar{z}_{i}^{(t)}\right) \text { or } \bar{z}_{i}^{(t)} \in \mathcal{N}^{k}\left(\bar{z}_{j}^{(t)}\right) \\0, & \text { otherwise }\end{array}\right. \quad\quad\quad(6)$
接着计算其对应的 $L^{\mathrm{sym}}$。
2.3.2 Representation Graph Contrastive
在得到 $L^{\mathrm{sym}}$ 后计算 RGC 损失:
$\mathcal{L}_{R G C}^{(t)}=-\frac{1}{N} \sum\limits _{i=1}^{N} \log {\Large \left(\frac{\sum\limits_{L_{i j}^{(t)}<0}-L_{i j}^{(t)} e^{z_{i}^{\prime} \cdot z_{j}^{\prime} / \tau}}{\sum\limits_{L_{i j}=0} e^{z_{i}^{\prime} \cdot z_{j}^{\prime} / \tau}}\right)} \quad\quad\quad(8)$
2.3.3 Assignment Graph Contrastive
传统:image 本身以及其增强 image 应该分配给同一个簇;
本文:外加 image 的邻居也应该分配给同一个簇;
假设 $I^{\prime}=\left\{I_{1}^{\prime}, \ldots, I_{N}^{\prime}\right\}$ 是原始图像 $\mathbf{I}=\left\{I_{1}, \ldots, I_{N}\right\}$ 的随机增强视图。$\tilde{I}^{\prime}=\left\{\tilde{I}_{1}^{\prime}, \ldots, \tilde{I}_{N}^{\prime}\right\} $ 中 $\tilde{I}_{i}^{\prime}$ 是 $I_{i}$ 根据图邻接矩阵 $A(t)$ 选择的随机邻居,$I^{\prime}$ 和 $ \tilde{I}^{\prime}$ 的概率分配矩阵如下:【行向量角度】
其中,$\operatorname{RN}\left(I_{i}\right)$ 表示图像 $I_{i}$ 的一个随机邻居。
对上述概率分配矩阵进行转换:【列向量的角度】
$\mathbf{q}^{\prime}=\left[q_{1}^{\prime}, \quad \ldots \quad, q_{K}^{\prime}\right]_{N \times K}$
$\tilde{\mathbf{q}}^{\prime}=\left[\tilde{q}_{1}^{\prime}, \quad \cdots \quad, \tilde{q}_{K}^{\prime}\right]_{N \times K}$
其中 $q_{i}^{\prime}$ 和 $\tilde{q}_{i}^{\prime}$ 可以告诉我们 $\mathbf{I}^{\prime}$ 和 $\tilde{\mathbf{I}}^{\prime}$ 中的哪些图片将分别被分配给簇 $i$ 。那么我们可以将AGC的学习损失定义为:
$\mathcal{L}_{A G C}=-\frac{1}{K} \sum\limits _{i=1}^{K} \log \left({\Large \frac{e^{q_{i}^{\prime} \cdot \tilde{q}_{i}^{\prime} / \tau}}{\sum _{j=1}^{K} e^{q_{i}^{\prime} \cdot \tilde{q}_{j}^{\prime} / \tau}} }\right)\quad\quad\quad(9)$
2.3.4 Cluster Regularization Loss
在深度聚类中,很容易陷入局部最优解,将大多数样本分配到少数聚类中。为了避免简单的解决方案,我们还添加了一个类似于 PICA[16] 和 SCAN[33] 的聚类正则化损失:
$\mathcal{L}_{C R}=\log (K)-H(\mathcal{Z})\quad\quad\quad(10)$
其中,$H$ 是熵函数,${\large \mathcal{Z}_{i}=\frac{\sum_{j=1}^{N} q_{i j}}{\sum _{i=1}^{K} \sum_{j=1}^{N} q_{i j}}} $,$\mathbf{q}=\left[q_{1}, \cdots, q_{K}\right]_{N \times K}$ 是 $\mathbf{I}$ 的分配概率。
那么GCC的总体目标函数可以表述为:
$\mathcal{L}=\mathcal{L}_{R G C}+\lambda \mathcal{L}_{A G C}+\eta \mathcal{L}_{C R}\quad\quad\quad(11)$
其中,$ \lambda$ 和 $\eta$ 是权重参数。
2.4 Model Training
训练过程如下:
3 Experiments
实验结果
修改历史
2022-04-18 创建文章
2022-06-23 二次修改
相关论文
基于 reconstruction 的深度聚类方法:[39, 28, 8, 11, 40]基于 self-augmentation 的深度聚类方法:[3, 36, 17, 12, 16, 33, 44]
经典的聚类算法:[43, 10, 2, 35, 37]
谱聚类:[26]
子空间聚类:[24, 9]
深度自适应聚类:[3]
深度综合相关挖掘:[36]
聚类正则化:PICA [16]、SCAN [33]
因上求缘,果上努力~~~~ 作者:图神经网络,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/16160437.html