利用torch.nn实现前馈神经网络解决 多分类 任务使用至少三种不同的激活函数

1 导入包

import torch
import numpy as np
import torch.nn as nn
from torch.utils.data import TensorDataset,DataLoader
import torchvision
from IPython import display
from torchvision import transforms

2 加载数据

mnist_train = torchvision.datasets.MNIST(root='./datasets/',download = True,train = True,transform = transforms.ToTensor())
mnist_test = torchvision.datasets.MNIST(root='./datasets/',download = True,train = False,transform = transforms.ToTensor())
batch_size = 256
train_iter = DataLoader(dataset = mnist_train,shuffle = True,batch_size = batch_size)
test_iter = DataLoader(dataset = mnist_test,shuffle = True,batch_size = batch_size)

3 定义平铺层

class FlattenLayer(torch.nn.Module):
    def __init__(self):
         super(FlattenLayer, self).__init__()
    def forward(self, x):
        return x.view(x.shape[0],784)

4 模型选择

num_input,num_hidden1,num_hidden2,num_output = 28*28,512,256,10
def choose_model(model_type):
    if model_type =='ReLU':
        activation = nn.ReLU()
    elif model_type =='ELU':
        activation = nn.ELU()
    else:
        activation = nn.Sigmoid()
    model = nn.Sequential()
    model.add_module("flatten",FlattenLayer())
    model.add_module("linear1",nn.Linear(num_input,num_hidden1))
    model.add_module("activation",activation)
    model.add_module("linear2",nn.Linear(num_hidden1,num_hidden2))
    model.add_module("activation",activation)
    model.add_module("linear3",nn.Linear(num_hidden2,num_output))
    return model 
model = choose_model('ReLU')
print(model)

5 参数初始化

# for param in model.parameters():
#     nn.init.normal_(param,mean=0,std=0.001)
    
for m in model.modules():
     if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            nn.init.constant_(m.bias, 0.1)

6 定义训练函数

def train(net,train_iter,test_iter,loss,num_epochs):
    train_ls,test_ls,train_acc,test_acc = [],[],[],[]
    for epoch in range(num_epochs):
        train_ls_sum,train_acc_sum,n = 0,0,0
        for x,y in train_iter:
            y_pred = net(x)
            l = loss(y_pred,y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_ls_sum +=l.item()
            train_acc_sum += (y_pred.argmax(dim = 1)==y).sum().item()
            n += y_pred.shape[0]
        train_ls.append(train_ls_sum)
        train_acc.append(train_acc_sum/n)
        
        test_ls_sum,test_acc_sum,n = 0,0,0
        for x,y in test_iter:
            y_pred = net(x)
            l = loss(y_pred,y)
            test_ls_sum +=l.item()
            test_acc_sum += (y_pred.argmax(dim = 1)==y).sum().item()
            n += y_pred.shape[0]
        test_ls.append(test_ls_sum)
        test_acc.append(test_acc_sum/n)
        print('epoch %d, train_loss %.6f,test_loss %f, train_acc %.6f,test_acc %f'
              %(epoch+1, train_ls[epoch],test_ls[epoch], train_acc[epoch],test_acc[epoch]))
    return train_ls,test_ls,train_acc,test_acc_sum

7 定义损失函数和优化器

#训练次数和学习率
num_epochs = 20
lr = 0.01
loss  = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=lr)

8 模型训练

train_loss,test_loss,train_acc,test_acc = train(model,train_iter,test_iter,loss,num_epochs)

 

posted @ 2022-03-08 17:46  图神经网络  阅读(573)  评论(0编辑  收藏  举报
Live2D