手动实现前馈神经网络解决 多分类 任务

1 导入实验需要的包

import torch
import numpy as np
import random
from IPython import  display
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader,TensorDataset
from torchvision import transforms,datasets
from torch import nn

2 加载数据集

mnist_train = datasets.MNIST(root = './Datasets/MNIST/',train = True,download = True,transform =transforms.ToTensor())
mnist_test = datasets.MNIST(root ='./Datasets/MNIST/',train = False,download = True,transform = transforms.ToTensor())

batch_size = 256
train_iter = DataLoader( 
    dataset = mnist_train,
    shuffle = True,
    batch_size = batch_size,
    num_workers = 0
)
test_iter = DataLoader(
    dataset  = mnist_test,
    shuffle  =False,
    batch_size = batch_size,
    num_workers = 0
)

3 初始化参数

num_input ,num_hiddens ,num_output = 784,256,10
W1 =  torch.tensor(np.random.normal(0,0.01,size = (num_hiddens,num_input)),dtype = torch.float32)
b1 = torch.zeros(1,dtype = torch.float32)

W2 =  torch.tensor(np.random.normal(0,0.01,size = (num_output,num_hiddens)),dtype = torch.float32)
b2 = torch.zeros(1,dtype = torch.float32)

params = [W1 ,b1,W2,b2]
for param in params:
    param.requires_grad_(requires_grad = True)

4 定义激活函数

def ReLU(X):
    return torch.max(X,other = torch.tensor(0.0))

5 定义网络模型

def net(x):
    x = x.view(-1,num_input)
    H1 = ReLU(torch.matmul(x,W1.t())+b1)
    H2 = torch.matmul(H1,W2.t()+b2)
    return H2

6 定义损失函数和优化算法

#定义多分类交叉熵损失函数  
loss = torch.nn.CrossEntropyLoss()  
def SGD(params,lr):
    for param in params:
        param.data -= param.grad/batch_size

7 定义评价函数

def evaluate_loss(data_iter,net):
        acc_sum,loss_sum,n= 0,0,0
        for x,y in data_iter:
            y_pred = net(x)
            l = loss(y_pred,y)
            loss_sum += l.item()
            acc_sum += (y_pred.argmax(dim =1)==y).sum().item()
            n += y.shape[0]
        return acc_sum/n,loss_sum/n
# def evaluate_loss():
#         n = mnist_test.data.shape[0]
#         x = torch.tensor(mnist_test.data,dtype = torch.float32)
#         y  = torch.tensor(mnist_test.targets,dtype = torch.float32)
#         y_pred = net(x)
#         acc_sum = (y_pred.argmax(dim = 1)==y).sum().item()
#         loss_sum = loss(y_pred,mnist_test.targets).item()
#         return acc_sum/n,loss_sum/n

8 定义训练函数

def train(net,train_iter,test_iter,loss,num_epochs,batch_size,lr):
    train_ls ,test_ls = [],[]
    for epoch in range(num_epochs):
        train_l_sum, train_acc_num,n = 0.0,0.0,0
        for x ,y in train_iter:
            y_pred = net(x)
            l = loss(y_pred,y)
            if params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            SGD(params,lr)
            train_l_sum += l.item()
            train_acc_num += (y_pred.argmax(dim = 1)==y).sum().item()
            n +=y.shape[0]
        train_ls.append(train_l_sum/n)  
        test_acc,test_l = evaluate_loss(test_iter,net)  
        test_ls.append(test_l)
        print('epoch %d, train_loss %.6f,test_loss %f,train_acc %.6f,test_acc %.6f'%(epoch+1, train_ls[epoch],test_ls[epoch],train_acc_num/n,test_acc))  
    return train_ls,test_ls        

9 训练

lr = 0.01  
num_epochs = 50  
train_loss,test_loss = train(net,train_iter,test_iter,loss,num_epochs,batch_size,lr)   

10 可视化

x = np.linspace(0,len(train_loss),len(train_loss))  
plt.plot(x,train_loss,label="train_loss",linewidth=1.5)  
plt.plot(x,test_loss,label="test_loss",linewidth=1.5)  
plt.xlabel("epoch")  
plt.ylabel("loss")  
plt.legend()  
plt.show()  
posted @ 2022-03-06 01:11  图神经网络  阅读(878)  评论(0编辑  收藏  举报
Live2D