Tensor
创建操作
Method | 描述 |
tensor |
用 构造一个张量data ; |
sparse_coo_tensor |
在给定索引处构造一个具有指定值的 COO(rdinate) 格式的稀疏张量; |
as_tensor |
将数据转换为torch.Tensor ; |
as_strided |
创建具有指定大小、步幅和 storage_offset 的现有 torch.Tensor 输入的视图; |
from_numpy |
从 numpy.ndarray 创建一个张量; |
frombuffer |
从实现 Python 缓冲区协议的对象创建一维张量; |
zeros |
返回一个用标量值 0 填充的张量,其形状由变量参数 *size 定义; |
zeros_like |
返回一个用标量值 0 填充的张量,大小与 input 相同; |
ones |
返回一个用标量值 1 填充的张量,其形状由变量参数 *size 定义; |
ones_like |
返回一个用标量值 1 填充的张量,其大小与input 相同; |
arange |
返回大小为$\left\lceil\frac{\text { end-start }}{\text { step }}\right\rceil$的一维张量,生成区间 [start , end),公差为 step; |
range |
返回大小为 $\left\lceil\frac{\text { end-start }}{\text { step }}\right\rceil +1$ 的一维张量值,从start 到 end ,步长为 step ; |
linspace |
创建大小为 steps 的一维张量,其值从到 start 到 end 的均匀分布; |
logspace |
创建大小为 steps 的一维张量,值从 ${{\text{{base}}}}^{{\text{{start}}}}$ 到 ${{\text{{base}}}}^{{\text{{end}}}}$ ; |
eye |
返回一个二维张量,其中对角线为 1,其他位置为 0; |
empty |
返回一个未初始化数据的张量; |
empty_like |
返回与 input 大小相同的未初始化张量; |
empty_strided |
返回一个充满未初始化数据的张量; |
full |
创建一个大小为 size 的张量,值用 fill_value 填充; |
full_like |
返回一个与input 大小相同的张量,并用fill_value 填充; |
quantize_per_tensor |
将浮点张量转换为具有给定比例和零点的量化张量; |
quantize_per_channel |
将浮点张量转换为具有给定比例和零点的每通道量化张量; |
dequantize |
通过反量化量化张量返回 fp32 张量; |
complex |
构造复数张量,其实部等于 real 虚部等于 imag ; |
polar |
构造复数张量,元素是笛卡尔坐标,对应于具有绝对值和角度的极坐标; |
heaviside |
计算 中的每个元素的 Heaviside 阶跃函数input ; |
索引、切片、连接、变异操作
Generators
Method | 描述 |
Generator |
创建并返回一个生成器对象,该对象管理生成伪随机数的算法的状态; |
随机抽样
分布
Method | 描述 |
bernoulli |
从伯努利分布中绘制二进制随机数(0 或 1); |
multinomial |
返回一个张量,每一行包含num_samples 从位于相应张量行中的多项概率分布中采样的索引; |
normal |
返回从给出均值和标准差的独立正态分布中抽取的随机数张量; |
poisson |
返回与从泊松分布中采样的每个元素大小相同的张量; |
rand |
从区间上的均匀分布返回一个填充有随机数[ 0 ,1 )的张量 |
rand_like |
返回一个大小相同的张量,其中input 填充了区间上均匀分布的随机数[0, 1); |
randint |
返回一个填充了随机整数的张量,用[low ,high)填充的张量; |
randint_like |
返回一个与 Tensor 形状相同的张量,[low,high)之间均匀生成的随机整数; |
randn |
从均值为 0方差为1的正态分布中返回一个填充随机数的张量; |
randn_like |
返回一个大小相同的张量,填充了来自均值为 0 和方差为 1 的正态分布的随机数; |
randperm |
返回从 0 到 n-1 的整数的随机排列;
|