KL散度非负性证明
1 KL散度
KL散度(Kullback–Leibler divergence) 定义如下:
$D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)$
目标:证明上式非负。
PS:信息论基础可以参考《机器学习——信息论基础》
2 凸函数与凹函数
连续函数 $f(x)$ 的定义域为 $I$ ,如果对 $I$ 内任意两个实数 $x_{1}$ , $x_{2}$ 及任意实数 $\lambda \in(0,1)$ ,都有
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad \quad \quad (1)$
则称 $f(x)$ 为 $I $ 上的凸函数(下凸)。
若有
$f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \quad \quad \quad (2)$
则称 $f(x)$ 为 $I$ 上的凹函数(上凹)。
举例:
$log(x)$ 是凹函数,反之$-log(x)$ 是凸函数。
3 加权Jensen不等式
若 $f(x)$ 是区间 $[a, b]$ 上的凸函数,则对任意的实数 $x_{1}, x_{2}, \cdots, x_{n} \in[a, b] $,对所有非负实数 $a_{1}, a_{2}, \cdots a_{n} \geq 0$ , 且 $a_{1}+a_{2}+\cdots+a_{n}=1 $ ,则下列不等式成立。
$f\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right) \leq a_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+\cdots+a_{n} f\left(x_{n}\right)$
4 证明KL散度非负性
KL散度(Kullback–Leibler divergence) 定义如下:
$D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)$
其中:
$\sum \limits_{i=1}^{n} P\left(x_{i}\right)=1$
由于 $\log (x)$ 是凹函数,所以$-\log (x)$ 是凸函数,因此将 KL散度定义式先变形再应用加权Jensen不等式,得:
$\begin{array}{l}D_{K L}&=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \log \left(\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}\right)\\ &=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times\left(-\log \left(\frac{Q\left(x_{i}\right)}{P\left(x_{i}\right)}\right)\right) \\&\geq-\log \left(\sum\limits_{i=1}^{n} P\left(x_{i}\right) \times \frac{Q\left(x_{i}\right)}{P\left(x_{i}\right)}\right)\\&=-\log \left(\sum\limits_{i=1}^{n} Q\left(x_{i}\right)\right)\end{array}$
Tips:Jensen不等式中的 $x_i$ 在这里相当于 $\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}$; $f $ 相当于 $-\log()$ ;$a_i$ 相当于 $P\left(x_{i}\right)$ 。
由于 $Q\left(x_{i}\right)$ 是一个概率分布,因此和 $P\left(x_{i}\right)$ 一样满足下面的式子 $\sum\limits _{i=1}^{n} Q\left(x_{i}\right)=1$
因此可以得到
$D_{K L} \geq-\log (1)=0$
到此KL散度非负性得证。
因上求缘,果上努力~~~~ 作者:图神经网络,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15859968.html