堆栈自编码器

参考文档

堆栈自编码器

Part1 加载项目需要的包

import torch
from torch import nn, optim, functional, utils
import torchvision
from torchvision import datasets, utils
import time, os,sys
from common.datas import get_mnist_loader
from torch.utils.data.dataloader import DataLoader
from torchvision.datasets import MNIST

Part2 导入数据集

def get_mnist_loader(batch_size=100, shuffle=True):
    """
    :return: train_loader, test_loader
    """
    train_dataset = MNIST(root='../data',
                          train=True,
                          transform=torchvision.transforms.ToTensor(),
                          download=True)
    test_dataset = MNIST(root='../data',
                         train=False,
                         transform=torchvision.transforms.ToTensor(),
                         download=True)

    train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                               batch_size=batch_size,
                                               shuffle=shuffle)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=shuffle)
    return train_loader, test_loader

Part3 自编码器层

class AutoEncoderLayer(nn.Module):
    """
    fully-connected linear layers for stacked autoencoders.
    This module can automatically be trained when training each layer is enabled
    Yes, this is much like the simplest auto-encoder
    """
    def __init__(self, input_dim=None, output_dim=None, SelfTraining=False):
        super(AutoEncoderLayer, self).__init__()
        # if input_dim is None or output_dim is None:raise ValueError
        self.in_features = input_dim
        self.out_features = output_dim
        self.is_training_self = SelfTraining  # 指示是否进行逐层预训练,还是训练整个网络
        self.encoder = nn.Sequential(
            nn.Linear(self.in_features, self.out_features, bias=True),
            nn.Sigmoid()  # 统一使用Sigmoid激活
        )
        self.decoder = nn.Sequential(  # 此处decoder不使用encoder的转置, 并使用Sigmoid进行激活.
            nn.Linear(self.out_features, self.in_features, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        out = self.encoder(x)
        # 重点-------
        if self.is_training_self:
            return self.decoder(out)
        else:
            return out
        
        

    def lock_grad(self):
        for param in self.parameters():
            param.requires_grad = False

    def acquire_grad(self):
        for param in self.parameters():
            param.requires_grad = True

    @property
    def input_dim(self):
        return self.in_features

    @property
    def output_dim(self):
        return self.out_features

    @property
    def is_training_layer(self):
        return self.is_training_self

    @is_training_layer.setter
    def is_training_layer(self, other: bool):
        self.is_training_self = other

Part 4 堆栈自编码器

class StackedAutoEncoder(nn.Module):
    """
    Construct the whole network with layers_list
    > 栈式自编码器的架构一般是关于中间隐层对称的
    """
    def __init__(self, layers_list=None):
        super(StackedAutoEncoder, self).__init__()
        self.layers_list = layers_list
        self.initialize()
        self.encoder_1 = self.layers_list[0]
        self.encoder_2 = self.layers_list[1]
        self.encoder_3 = self.layers_list[2]
        self.encoder_4 = self.layers_list[3]

    def initialize(self):
        for layer in self.layers_list:
            # assert isinstance(layer, AutoEncoderLayer)
            layer.is_training_layer = False
            # for param in layer.parameters():
            #     param.requires_grad = True

    def forward(self, x):
        out = x
        # for layer in self.layers_list:
        #     out = layer(out)
        out = self.encoder_1(out)
        out = self.encoder_2(out)
        out = self.encoder_3(out)
        out = self.encoder_4(out)
        return out

Part5 参数设置

num_tranin_layer_epochs = 20
num_tranin_whole_epochs = 50
batch_size = 100
shuffle = True

Part6 单层训练

def train_layers(layers_list=None, layer=None, epoch=None, validate=True):
    """
    逐层贪婪预训练 --当训练第i层时, 将i-1层冻结
    """
    if torch.cuda.is_available():
        for model in layers_list:
            model.cuda()
    train_loader, test_loader = get_mnist_loader(batch_size=batch_size, shuffle=True)
    optimizer = optim.SGD(layers_list[layer].parameters(), lr=0.001)
    criterion = nn.BCELoss()

    # train
    for epoch_index in range(epoch):
        sum_loss = 0.

        # 冻结当前层之前的所有层的参数  --第0层没有前置层
        if layer != 0:
            for index in range(layer):
                layers_list[index].lock_grad()
                layers_list[index].is_training_layer = False  # 除了冻结参数,也要设置冻结层的输出返回方式

        for batch_index, (train_data, _) in enumerate(train_loader):
            # 生成输入数据
            if torch.cuda.is_available():
                train_data = train_data.cuda()  # 注意Tensor放到GPU上的操作方式,和model不同
            out = train_data.view(train_data.size(0), -1)

            # 对前(layer-1)冻结了的层进行前向计算
            if layer != 0:
                for lay in range(layer):
                    out = layers_list[lay](out)

            # 训练第layer层,该层是完整的自编码器
            pred = layers_list[layer](out)

            optimizer.zero_grad()
            loss = criterion(pred, out)
            sum_loss += loss
            loss.backward()
            optimizer.step()
            if (batch_index + 1) % 10 == 0:
                print("Train Layer: {}, Epoch: {}/{}, Iter: {}/{}, Loss: {:.4f}".format(
                    layer, (epoch_index + 1), epoch, (batch_index + 1), len(train_loader), loss
                ))

        if validate:
            pass

Part6 训练所有层

def train_whole(model=None, epoch=50, validate=True):
    print(">> start training whole model")
    if torch.cuda.is_available():
        model.cuda()

    # 解锁因预训练单层而冻结的参数
    for param in model.parameters():
        param.require_grad = True

    train_loader, test_loader = get_mnist_loader(batch_size=batch_size, shuffle=shuffle)
    optimizer = optim.SGD(model.parameters(), lr=0.001)
    # criterion = BCELoss()
    criterion = nn.MSELoss()

    # 生成/保存原始test图片 --取一个batch_size
    test_data, _ = next(iter(test_loader))
    torchvision.utils.save_image(test_data, './test_images/real_test_images.png')

    # train
    for epoch_index in range(epoch):
        sum_loss = 0.
        for batch_index, (train_data, _) in enumerate(train_loader):
            if torch.cuda.is_available():
                train_data = train_data.cuda()
            x = train_data.view(train_data.size(0), -1)

            out = model(x)

            optimizer.zero_grad()
            loss = criterion(out, x)
            sum_loss += loss
            loss.backward()
            optimizer.step()

            if (batch_index + 1) % 10 == 0:
                print("Train Whole, Epoch: {}/{}, Iter: {}/{}, Loss: {:.4f}".format(
                    (epoch_index + 1), epoch, (batch_index + 1), len(train_loader), loss
                ))
            if batch_index == len(train_loader) - 1:
                torchvision.utils.save_image(out.view(100, 1, 28, 28), "./test_images/out_{}_{}.png".format(epoch_index, batch_index))

        # 每个epoch验证一次
        if validate:
            if torch.cuda.is_available():
                test_data = test_data.cuda()
            x = test_data.view(test_data.size(0), -1)
            out = model(x)
            loss = criterion(out, x)
            print("Test Epoch: {}/{}, Iter: {}/{}, test Loss: {}".format(
                epoch_index + 1, epoch, (epoch_index + 1), len(test_loader), loss
            ))
            image_tensor = out.view(batch_size, 1, 28, 28)
            torchvision.utils.save_image(image_tensor, './test_images/test_image_epoch_{}.png'.format(epoch_index))
    print("<< end training whole model")

Part7 训练

if __name__ == '__main__':
    import os
    if not os.path.exists('test_images'):
        os.mkdir('test_images')
    if not os.path.exists('models'):
        os.mkdir('models')

    nun_layers = 5
    encoder_1 = AutoEncoderLayer(784, 256, SelfTraining=True)
    encoder_2 = AutoEncoderLayer(256, 64, SelfTraining=True)
    decoder_3 = AutoEncoderLayer(64, 256, SelfTraining=True)
    decoder_4 = AutoEncoderLayer(256, 784, SelfTraining=True)
    layers_list = [encoder_1, encoder_2, decoder_3, decoder_4]
   

    # 按照顺序对每一层进行预训练
    for level in range(nun_layers - 1):
        print("current level = ",level )
        train_layers(layers_list=layers_list, layer=level, epoch=num_tranin_layer_epochs, validate=True)

    # 统一训练
    SAE_model = StackedAutoEncoder(layers_list=layers_list)
    train_whole(model=SAE_model, epoch=num_tranin_whole_epochs, validate=True)

    # 保存模型 refer: https://pytorch.org/docs/master/notes/serialization.html
    torch.save(SAE_model, './models/sae_model.pt')

 

posted @ 2021-12-21 21:01  图神经网络  阅读(277)  评论(0编辑  收藏  举报
Live2D