pytorch中的Variable()

函数简介

torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现(tensor变成variable之后才能进行反向传播求梯度?用变量.backward()进行反向传播之后,var.grad中保存了var的梯度)

x = Variable(tensor, requires_grad = True)

Varibale包含三个属性:

  • data:存储了Tensor,是本体的数据
  • grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致
  • grad_fn:指向Function对象,用于反向传播的梯度计算之用

用法:

import torch
from torch.autograd import Variable
 
x = Variable(torch.one(2,2), requires_grad = True)
print(x)#其实查询的是x.data,是个tensor

举个例子求梯度:

构建一个简单的方程:y = x[0,0] + x[0,1] + x[1,0] + x[1,1],Variable的运算结果也是Variable,但是,中间结果反向传播中不会被求导()

这和TensorFlow不太一致,TensorFlow中中间运算果数据结构均是Tensor

y = x.sum()
 
y
"""
  Variable containing:
   4
  [torch.FloatTensor of size 1]
"""
 
 
#可以查看目标函数的.grad_fn方法,它用来求梯度
y.grad_fn
"""
    <SumBackward0 at 0x18bcbfcdd30>
"""
 
y.backward()  # 反向传播
x.grad  # Variable的梯度保存在Variable.grad中
"""
  Variable containing:
   1  1
   1  1
  [torch.FloatTensor of size 2x2]
"""
 
 
#grad属性保存在Variable中,新的梯度下来会进行累加,可以看到再次求导后结果变成了2,
y.backward()
x.grad  # 可以看到变量梯度是累加的
"""
    Variable containing:
     2  2
     2  2
    [torch.FloatTensor of size 2x2]
"""
 
#所以要归零
x.grad.data.zero_()  # 归零梯度,注意,在torch中所有的inplace操作都是要带下划线的,虽然就没有.data.zero()方法
 
"""
 0  0
 0  0
[torch.FloatTensor of size 2x2]
"""
 
 
#对比Variable和Tensor的接口,相差无两
x = Variable(torch.ones(4, 5))
 
y = torch.cos(x)                         # 传入Variable
x_tensor_cos = torch.cos(x.data)  # 传入Tensor
 
print(y)
print(x_tensor_cos)
 
"""
Variable containing:
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
[torch.FloatTensor of size 4x5]
 
 
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
 0.5403  0.5403  0.5403  0.5403  0.5403
[torch.FloatTensor of size 4x5]

参考:

https://blog.csdn.net/u012370185/article/details/94391428

 

posted @ 2021-12-20 09:50  图神经网络  阅读(178)  评论(0编辑  收藏  举报
Live2D