深度图神经网络(GNN)论文

part1/经典款论文

1. KDD 2016,Node2vec 经典必读第一篇,平衡同质性和结构性

《node2vec: Scalable Feature Learning for Networks》

 

2. WWW2015,LINE 1阶+2阶相似度

《Line: Large-scale information network embedding》

 

3. KDD 2016,SDNE 多层自编码器

《Structural deep network embedding》

 

4. KDD 2017,metapath2vec  异构图网络

《metapath2vec: Scalable representation learning for heterogeneous networks》

 

5. NIPS 2013,TransE  知识图谱奠基

《Translating Embeddings for Modeling Multi-relational Data》

 

6. ICLR 2018,GAT  attention机制

《Graph Attention Network》

 

7. NIPS 2017,GraphSAGE  归纳式学习框架

《Inductive Representation Learning on Large Graphs 》

 

8. ICLR 2017,GCN 图神经开山之作

《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》

 

9. ICLR 2016,GGNN 门控图神经网络

《Gated Graph Sequence Neural Networks》

 

10. ICML 2017,MPNN  空域卷积消息传递框架

《Neural Message Passing for Quantum Chemistry》

 

part2/热门款论文 

2020年之前

 

11.[arXiv 2019]Revisiting Graph Neural Networks: All We Have is Low-Pass Filters

重温图神经网络:我们只有低通滤波器

 

[论文]

https://arxiv.org/abs/1905.09550

 

12.[NeurIPS 2019]Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks

打破天花板:更强的多尺度深度图卷积网络

 

[论文] 

https://arxiv.org/abs/1906.02174

 

13.[ICLR 2019] Predict then Propagate: Graph Neural Networks meet Personalized PageRank

先预测后传播:图神经网络满足个性化 PageRank

 

[论文] 

https://arxiv.org/abs/1810.05997

 

[代码] 

https://github.com/klicperajo/ppnp

 

14.[ICCV 2019]DeepGCNs: Can GCNs Go as Deep as CNNs?

DeepGCN:GCN能像CNN一样深入吗?

 

[论文] 

https://arxiv.org/abs/1904.03751

 

[代码(Pytorch)]

https://github.com/lightaime/deep_gcns_torch

 

[代码(TensorFlow)]

https://github.com/lightaime/deep_gcns

 

15.[ICML 2018]

Representation Learning on Graphs with Jumping Knowledge Networks

基于跳跃知识网络的图表征学习

 

[论文] 

https://arxiv.org/abs/1806.03536

 

16.[AAAI 2018]Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

深入了解用于半监督学习的图卷积网络

 

[论文] 

https://arxiv.org/abs/1801.07606


2020年

 

17.[arXiv 2020]Deep Graph Neural Networks with Shallow Subgraph Samplers

具有浅子图采样器的深图神经网络

 

[论文] 

https://arxiv.org/abs/2012.01380

 

18.[arXiv 2020]Revisiting Graph Convolutional Network on Semi-Supervised Node Classification from an Optimization Perspective

从优化的角度重新审视半监督节点分类的图卷积网络

 

[论文] 

https://arxiv.org/abs/2009.11469

 

19.[arXiv 2020]

Tackling Over-Smoothing for General Graph Convolutional Networks

解决通用图卷积网络的过度平滑

 

[论文] 

https://arxiv.org/abs/2008.09864

 

20.[arXiv 2020]DeeperGCN: All You Need to Train Deeper GCNs

DeeperGCN:训练更深的 GCN 所需的一切

 

[论文] 

https://arxiv.org/abs/2006.07739

 

[代码]

https://github.com/lightaime/deep_gcns_torch

 

21.[arXiv 2020]Effective Training Strategies for Deep Graph Neural Networks

深度图神经网络的有效训练策略

 

[论文] 

https://arxiv.org/abs/2006.07107

 

[代码] 

https://github.com/miafei/NodeNorm

 

22.[arXiv 2020]Revisiting Over-smoothing in Deep GCNs

重新审视深度GCN中的过度平滑 

 

[论文] 

https://arxiv.org/abs/2003.13663

 

23.[NeurIPS 2020]Graph Random Neural Networks for Semi-Supervised Learning on Graphs

用于图上半监督学习的图随机神经网络

 

[论文] 

https://proceedings.neurips.cc/paper/2020/hash/fb4c835feb0a65cc39739320d7a51c02-Abstract.html

 

[代码] 

https://github.com/THUDM/GRAND

 

24.[NeurIPS 2020]Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

散射GCN:克服图卷积网络中的过度平滑

 

[论文] 

https://proceedings.neurips.cc/paper/2020/hash/a6b964c0bb675116a15ef1325b01ff45-Abstract.html

 

[代码] 

https://github.com/dms-net/scatteringGCN

 

25.[NeurIPS 2020]Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks

Transduction through Gradient Boosting 的优化和泛化分析及其在多尺度图神经网络中的应用

 

[论文] 

https://proceedings.neurips.cc/paper/2020/hash/dab49080d80c724aad5ebf158d63df41-Abstract.html

 

[代码] 

https://github.com/delta2323/GB-GNN

 

26.[NeurIPS 2020]Towards Deeper Graph Neural Networks with Differentiable Group Normalization

迈向具有可微组归一化的更深图神经网络

 

[论文] 

https://arxiv.org/abs/2006.06972

 

27.[ICML 2020 Workshop GRL+]A Note on Over-Smoothing for Graph Neural Networks

关于图神经网络过度平滑的说明

 

[论文] 

https://arxiv.org/abs/2006.13318

 

28.[ICML 2020]Bayesian Graph Neural Networks with Adaptive Connection Sampling

具有自适应连接采样的贝叶斯图神经网络

 

[论文] 

https://arxiv.org/abs/2006.04064

 

29.[ICML 2020]Continuous Graph Neural Networks连续图神经网络

 

[论文] 

https://arxiv.org/abs/1912.00967

 

30.[ICML 2020]Simple and Deep Graph Convolutional Networks简单和深度图卷积网络

 

[论文] 

https://arxiv.org/abs/2007.02133

 

[代码] 

https://github.com/chennnM/GCNII

 

31.[KDD 2020] Towards Deeper Graph Neural Networks走向更深的图神经网络

 

[论文] 

https://arxiv.org/abs/2007.09296

 

[代码] 

https://github.com/mengliu1998/DeeperGNN

 

32.[ICLR 2020]Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

图神经网络对节点分类的表达能力呈指数级 下降

 

[论文] 

https://arxiv.org/abs/1905.10947

 

[代码] 

https://github.com/delta2323/gnn-asymptotics

 

33.[ICLR 2020] DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge:迈向节点分类的深度图卷积网络

 

[Paper] 

https://openreview.net/forum?id=Hkx1qkrKPr

 

[Code] 

https://github.com/DropEdge/DropEdge

 

34.[ICLR 2020] PairNorm: Tackling Oversmoothing in GNNs

PairNorm:解决GNN中的过度平滑问题

 

[论文]

https://openreview.net/forum?id=rkecl1rtwB

 

[代码]

https://github.com/LingxiaoShawn/PairNorm

 

35.[ICLR 2020]Measuring and Improving the Use of Graph Information in Graph Neural Networks

测量和改进图神经网络中图信息的使用

 

[论文] 

https://openreview.net/forum?id=rkeIIkHKvS

 

[代码] 

https://github.com/yifan-h/CS-GNN

 

36.[AAAI 2020]Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View

从拓扑角度测量和缓解图神经网络的过度平滑问题

 

[论文] 

https://arxiv.org/abs/1909.03211

 

同学们是不是发现有些论文有代码,有些论文没有代码?学姐建议学概念读没代码的,然后再读有代码的,原因的话上周的文章有写,花几分钟看一下【学姐带你玩AI】公众号的——《图像识别深度学习研究方向没有导师带该怎么学习》

 

part3/最新款论文


37.[arXiv 2021]Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks

 

同一枚硬币的两面:图卷积神经网络中的异质性和过度平滑

 

[论文] 

https://arxiv.org/abs/2102.06462v2

 

38.[arXiv 2021]Graph Neural Networks Inspired by Classical Iterative Algorithms

受经典迭代算法启发的图神经网络

 

[论文] 

https://arxiv.org/abs/2103.06064

 

39.[ICML 2021]Training Graph Neural Networks with 1000 Layers

训练 1000 层图神经网络

 

[论文] 

https://arxiv.org/abs/2106.07476

 

[代码]

https://github.com/lightaime/deep_gcns_torch

 

40.[ICML 2021] Directional Graph Networks 方向图网络

 

[论文] 

https://arxiv.org/abs/2010.02863

 

[代码] 

https://github.com/Saro00/DGN

 

41.[ICLR 2021]On the Bottleneck of Graph Neural Networks and its Practical Implications

关于图神经网络的瓶颈及其实际意义

 

[论文] 

https://openreview.net/forum?id=i80OPhOCVH2

 

[代码] https://github.com/tech-srl/bottleneck/

 

42.[ICLR 2021] Adaptive Universal Generalized PageRank Graph Neural Network

 

[论文] 

https://openreview.net/forum?id=n6jl7fLxrP

 

[代码]

https://github.com/jianhao2016/GPRGNN

 

43.[ICLR 2021]Simple Spectral Graph Convolution

简单的谱图卷积

 

[论文]

https://openreview.net/forum?id=CYO5T-YjWZV 

 

地址:https://github.com/mengliu1998/awesome-deep-gnn

posted @ 2021-12-18 11:11  图神经网络  阅读(837)  评论(0编辑  收藏  举报
Live2D