torch.nn.Embedding

官方文档

 Parameters

  • num_embeddings (int) – size of the dictionary of embeddings

  • embedding_dim (int) – the size of each embedding vector

  • padding_idx (intoptional) – If specified, the entries at padding_idx do not contribute to the gradient; therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed “pad”. For a newly constructed Embedding, the embedding vector at padding_idx will default to all zeros, but can be updated to another value to be used as the padding vector.

  • max_norm (floatoptional) – If given, each embedding vector with norm larger than max_norm is renormalized to have norm max_norm.

  • norm_type (floatoptional) – The p of the p-norm to compute for the max_norm option. Default 2.

  • scale_grad_by_freq (booleanoptional) – If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default False.

  • sparse (booloptional) – If True, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for more details regarding sparse gradients.


Examples:

import torch
from torch import nn
embedding = nn.Embedding(5, 4) # 假定字典中只有5个词,词向量维度为4
word = [[1, 2, 3],
        [2, 3, 4]] # 每个数字代表一个词,例如 {'!':0,'how':1, 'are':2, 'you':3,  'ok':4}
                    #而且这些数字的范围只能在0~4之间,因为上面定义了只有5个词
embed = embedding(torch.LongTensor(word))
print(embed)
print(embed.size())

 结果:

tensor([[[-0.0436, -1.0037, 0.2681, -0.3834],
[ 0.0222, -0.7280, -0.6952, -0.7877],
[ 1.4341, -0.0511, 1.3429, -1.2345]],

[[ 0.0222, -0.7280, -0.6952, -0.7877],
[ 1.4341, -0.0511, 1.3429, -1.2345],
[-0.2014, -0.4946, -0.0273, 0.5654]]], grad_fn=<EmbeddingBackward0>)
torch.Size([2, 3, 4])

 

posted @ 2021-12-13 16:06  图神经网络  阅读(138)  评论(0编辑  收藏  举报
Live2D