分类问题中的类别不平衡-总结

问题形式
  该问题一般指的是训练集中正负样本数比例相差过大,

  举个例子,在极端情况下,在总体为1000的样本,若中有999个样本标记为A类,有1个样本标记为B类。则很明显,A类与B类的样本数偏差极大。一般认为当类别比例超过4:1时,则认为类别不均衡。

  其一般会造成以下的一些情况:

  1. 类别少的误判惩罚过低,导致有所偏袒,当样本不确定时倾向于把样本分类为多数类。
  2. 样本数量分布很不平衡时,特征的分布同样会不平衡。
  3. 传统的评价指标变得不可靠,例如准确率。

常见解决方法

  1. 进行重采样,过采样 或 欠采样
  2. 人工合成新的数据。 1)基于经验,对属性值进行随机采样,生成新的样本。2)基于贝叶斯理论,对属性值进行随机采样,可能会缺少之前属性之间的线性相关性。3)基于系统的人工样本生成方法,SMOTE(Synthetic Minority Over-sampling Technique),类似于KNN的数据生成算法。
  3. 尝试多种分类算法,不同的数据形式,适合不同的算法,尝试多种分类算法和不同的评价指标进行比较。
  4. 尝试对模型进行惩罚,即对模型参数进行调整,例如SVM或XGBoost等。
  5. 尝试一个新的角度理解问题。1.当作异常点检测即是对那些罕见事件进行识别。2.化趋势检测类似于异常点检测,不同在于其通过检测不寻常的变化趋势来识别。
  6. 尝试着将问题分解成多个子问题进行求解。
  7. 尝试多模型融合。
  8. 将大样本聚成K个类别,每个类别分别与小样本进行训练生成分类器,再将K个结果作为判断标准进行判断,例如多数表决,或作为特征再生成新的模型等等。

 

 

 

参考:

https://blog.csdn.net/heyongluoyao8/article/details/49408131

 

posted @ 2021-11-17 09:48  图神经网络  阅读(475)  评论(0编辑  收藏  举报
Live2D