在多分类任务实验中 用torch.nn实现 𝑳𝟐 正则化

1 导入实验所需要的包

import torch
import torch.nn as nn
import torchvision 
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader,TensorDataset 
import numpy as np
%matplotlib inline

2 下载MNIST数据集以及读取数据

train_dataset = torchvision.datasets.MNIST(
    root = '../Datasets/MNIST',
    train = True,
    transform = transforms.ToTensor(),
    download = True,
)
test_dataset = torchvision.datasets.MNIST(
    root = '../Datasets/MNIST',
    train = False,
    download = True,
    transform = transforms.ToTensor(),
)
print(train_dataset.data.shape)
print(train_dataset.targets.shape)
device='cuda:0'
train_loader = DataLoader(train_dataset,batch_size= 64,shuffle=False)
test_loader = DataLoader(test_dataset,batch_size= 64,shuffle= True)

3 定义模型

class LinearNet(nn.Module):
    def __init__(self,num_input,num_hidden,num_output):
        super(LinearNet,self).__init__()
        self.linear1 = nn.Linear(num_input,num_hidden).to(device)
        self.linear2 =nn.Linear(num_hidden,num_output).to(device)
        self.relu = nn.ReLU()
        self.flatten = nn.Flatten()
    def forward(self,x):
        out = self.flatten(x)
        out = self.relu(self.linear1(out))
        out = self.linear2(out)
        return out  

4 参数初始化

num_input,num_hidden ,num_output = 784,256,10
net = LinearNet(num_input,num_hidden,num_output).to(device = 'cuda:0')

for param in net.state_dict():
    print(param)
loss = nn.CrossEntropyLoss()
num_epochs = 100
net = LinearNet(num_input,num_hidden,num_output)
param_w = [net.linear1.weight,net.linear2.weight]
param_b = [net.linear1.bias,net.linear2.bias]
optimzer_w = torch.optim.SGD(param_w,lr=0.001,weight_decay=0.01)
optimzer_b = torch.optim.Adam(param_b,lr=0.001)

5 定义训练函数

def train(net,num_epochs):
    train_ls,test_ls = [],[]
    for epoch in range(num_epochs):
        ls = 0
        for x ,y in train_loader:
            x,y = x.cuda(),y.cuda()
            y_pred = net(x)
            l = loss(y_pred,y)
            optimzer_w.zero_grad()
            optimzer_b.zero_grad()
            l.backward()
            optimzer_w.step()
            optimzer_b.step()
            ls += l.item()
        train_ls.append(ls)
        
        ls = 0
        for x ,y in test_loader:
            x,y = x.cuda(),y.cuda()
            y_pred = net(x)
            l = loss(y_pred,y)
            l += l.item()
            ls += l.item()
        test_ls.append(ls)
        print('epoch: %d, train loss: %f, test loss: %f'%(epoch+1,train_ls[-1],test_ls[-1]))

6 开始训练

train(net,num_epochs)
posted @ 2022-03-30 09:09  图神经网络  阅读(1173)  评论(0编辑  收藏  举报
Live2D