torch.nn.BCELoss用法

1. 定义
  数学公式为 Loss = -w * [p * log(q) + (1-p) * log(1-q)] ,其中p、q分别为理论标签、实际预测值,w为权重。这里的log对应数学上的ln。

  PyTorch对应函数为:
    torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction=‘mean’)
  计算目标值和预测值之间的二进制交叉熵损失函数。

  有四个可选参数:weight、size_average、reduce、reduction

  1. weight必须和target的shape一致,默认为none。定义BCELoss的时候指定即可。
  2. 默认情况下 nn.BCELoss(),reduce = True,size_average = True。
  3. 如果reduce为False,size_average不起作用,返回向量形式的loss。
  4. 如果reduce为True,size_average为True,返回loss的均值,即loss.mean()。
  5. 如果reduce为True,size_average为False,返回loss的和,即loss.sum()。
  6. 如果reduction = ‘none’,直接返回向量形式的 loss。
  7. 如果reduction = ‘sum’,返回loss之和。
  8. 如果reduction = ''elementwise_mean,返回loss的平均值。
  9. 如果reduction = ''mean,返回loss的平均值

2. 验证代码

1>

import torch
import torch.nn as nn

m = nn.Sigmoid()

loss = nn.BCELoss(size_average=False, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)

 

 

 2>

import torch
import torch.nn as nn

m = nn.Sigmoid()

loss = nn.BCELoss(size_average=True, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)

 

 

 3>

import torch
import torch.nn as nn

m = nn.Sigmoid()

loss = nn.BCELoss(size_average=True, reduce=True)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)

 

 

 4>

import torch
import torch.nn as nn

m = nn.Sigmoid()

loss = nn.BCELoss(size_average=False, reduce=True)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)

 

 

 5>

import torch
import torch.nn as nn

m = nn.Sigmoid()

loss = nn.BCELoss(reduction = 'none')
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("计算loss的结果:")
print(output)

 

 6>

import torch
import torch.nn as nn

m = nn.Sigmoid()
weights=torch.randn(3)

loss = nn.BCELoss(weight=weights,size_average=False, reduce=False)
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
lossinput = m(input)
output = loss(lossinput, target)

print("输入值:")
print(lossinput)
print("输出的目标值:")
print(target)
print("权重值")
print(weights)
print("计算loss的结果:")
print(output)

 

 

 

 

2. 验证代码
1>
import torchimport torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=False, reduce=False)input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("计算loss的结果:")print(output)1234567891011121314151617
2>
import torchimport torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=True, reduce=False)input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("计算loss的结果:")print(output)1234567891011121314151617
3>
import torchimport torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=True, reduce=True)input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("计算loss的结果:")print(output)1234567891011121314151617
4>
import torchimport torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(size_average=False, reduce=True)input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("计算loss的结果:")print(output)1234567891011121314151617
5>
import torchimport torch.nn as nn
m = nn.Sigmoid()
loss = nn.BCELoss(reduction = 'none')input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("计算loss的结果:")print(output)1234567891011121314151617
6>
import torchimport torch.nn as nn
m = nn.Sigmoid()weights=torch.randn(3)
loss = nn.BCELoss(weight=weights,size_average=False, reduce=False)input = torch.randn(3, requires_grad=True)target = torch.empty(3).random_(2)lossinput = m(input)output = loss(lossinput, target)
print("输入值:")print(lossinput)print("输出的目标值:")print(target)print("权重值")print(weights)print("计算loss的结果:")print(output)1234567891011121314151617181920
————————————————版权声明:本文为CSDN博主「qq_29631521」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_29631521/article/details/104907401

posted @ 2021-11-04 21:20  图神经网络  阅读(1793)  评论(0编辑  收藏  举报
Live2D