梯度消失、爆炸带来的影响
举个例子,对于一个含有三层隐藏层的简单神经网络来说,当梯度消失发生时,接近于输出层的隐藏层由于其梯度相对正常,所以权值更新时也就相对正常,但是当越靠近输入层时,由于梯度消失现象,会导致靠近输入层的隐藏层权值更新缓慢或者更新停滞。这就导致在训练时,只等价于后面几层的浅层网络的学习。

产生的原因
以上图中含有三个隐藏层的单神经元神经网络为例,激活函数使用 Sigmoid :
图中是一个四层的全连接网络,假设每一层网络激活后的输出为 ,其中 为第 层, 代表第 层的输入,也就是第 层的输出, 是激活函数,那么得出
记为
。
BP算法基于梯度下降策略,以目标的负梯度方向对参数进行调整,参数的更新为 ,如果要更新第二隐藏层的权值信息,根据链式求导法则,更新梯度信息:
由
得
其中 是第一层的输出。
且
对激活函数进行求导 ,如果此部分大于 1 , 那么层数增多的时候,最终的求出的梯度更新将以指数形式增加,即发生梯度爆炸。如果此部分小于1,那么随着层数增多,求出的梯度更新信息将会以指数形式衰减, 即发生了梯度消失。另外,需要注意的是 往往是矩阵形式,对于每个分量 分析如同激活函数。
从深层网络角度来讲,不同的层学习的速度差异很大,表现为网络中靠近输出的层学习的情况很好,靠近输入的层学习的很慢,有时甚至训练了很久,前几层的权值和刚开始随机初始化的值差不多。因此,梯度消失、爆炸,其根本原因在于反向传播训练法则,属于先天不足。
因上求缘,果上努力~~~~ 作者:别关注我了,私信我吧,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15371572.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY