交叉熵的计算

交叉熵公式:

    $H(p, q)=-\sum_{x} p(x) \log q(x)$

其中:

    $p$ 代表真实分布;

    $q$ 代表拟合分布;

代码:

# Example of target with class indices
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# Example of target with class probabilities
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

代码:

import torch
import torch.nn as nn

loss = nn.CrossEntropyLoss(reduction="none")
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
print(input)
print(target)
output = loss(input, target)
print(output)

result= -target * input.log_softmax(dim = -1)
print(result.sum(dim = -1))

输出:

tensor([[-0.5266,  0.7340,  0.3893,  1.0589, -0.1002],
        [-0.9927,  0.1257,  0.9907, -2.5100,  1.2567],
        [-1.2552,  1.3865, -0.8273,  0.2558,  1.1324]], requires_grad=True)
tensor([[0.0480, 0.0481, 0.1544, 0.0197, 0.7299],
        [0.0234, 0.0515, 0.3599, 0.2912, 0.2741],
        [0.0902, 0.1992, 0.1011, 0.4815, 0.1281]])
tensor([2.0538, 2.0998, 1.8626], grad_fn=<SumBackward1>)
tensor([2.0538, 2.0998, 1.8626], grad_fn=<NegBackward0>)

 

posted @ 2023-04-22 17:44  图神经网络  阅读(47)  评论(0编辑  收藏  举报
Live2D