HDU 1394 Minimum Inversion Number(线段树/树状数组求逆序数)

 

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17737    Accepted Submission(s): 10763

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

 

Output
For each case, output the minimum inversion number on a single line.
 

 

Sample Input
10 1 3 6 9 0 8 5 7 4 2
 

 

Sample Output
16
 

 

Author
CHEN, Gaoli
 

 

Source
 

题目链接:HDU 1394

 

主要操作:单点更新,区间求和

通过此题学习到了如何用NlogN的时间来求一个数列的逆序对个数(简称逆序数),先上暴力求法

暴力求法代码:

 

int cnt=0;
for (int i=1; i<=n; ++i)
{
	for (int j=i+1; j<=n; ++i)
	{
		if(arr[i]>arr[j])//i<j但arr[i]却大于arr[j],这就是一个逆序对<arr[i],arr[j]>
			++cnt;
	}
}
printf("%d\n",cnt);//cnt即为逆序对个数

那显然题目中的n可达5000,一平方估计得TLE,然后学习了一下用树状数组或线段树来求的方法。

 

主要思路:按照顺序读入一个数,记为arr[i]吧,然后对【arr[i]+1, end】求和记为sum,为什么这样就可以得到arr[i]的逆序对呢?

想想逆序对的定义:i<j且arr[i]>arr[j](假设i<j前面),显然题目按顺序读入已经无形中满足了i<j的要求,也就是说正常上升序列应该是i<j且arr[i]<arr[j] ,但是你出现了一个arr[i]>arr[j],也就是说让【arr[j],end】之间的arr[i]这个点的值发生变化(变为1),那我一旦对【arr[j]+1,end】求和就肯定会出现sum>0的情况,那这个大于0是谁造成的呢?就是某个大于arr[j]的arr[i],不用管他是谁,反正只要arr[i]>arr[j]就能对【arr[j],end】一段求和造成影响,那显然一个arr[i]与arr[j]能组成一对,那n个就组成n对,那每一个的影响值都设为1,那求和求出来的就是对数。

然后得到了最初的逆序数怎么往后推?那就考虑开头的数移到末尾的影响,显然比开头的arr[0]小的数有arr[0]-1个记为low(题目中范围为0~n-1的自然数,且会全部出现且不重复),然后除去开头的数一共有n-1个,那么剩下比arr[0]大的数有(n-1)-(arr[0]-1)个即n-arr[0]个记为up。然后看开头的移到末尾,原本的逆序数变成了正序,原本的正序变成了逆序,因此移动之后的sum'=sum+(正序变为逆序就要加)up-(逆序变为正序就要减)low

代入n与arr[0]得到sum'=sum+n-arr[0]-(arr[0]-1)=sum+n-arr[0]-arr[0]+1。

最后值得注意的是用树状数组的话题目中范围是0~n-1,出现0会死循环,因此arr[i]要自增1再操作。

树状数组代码(31ms):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=5010;
int T[N];
inline int lowbit(const int &n)
{
    return (n&-n);
}
void add(int k,int val)
{
    while (k<N)
    {
        T[k]+=val;
        k+=lowbit(k);
    }
}
int getsum(int k)
{
    int r=0;
    while (k)
    {
        r+=T[k];
        k-=lowbit(k);
    }
    return r;
}
int arr[N];
int main(void)
{
    int n,i,j;
    while (~scanf("%d",&n))
    {
        CLR(arr,0);
        CLR(T,0);
        int sum=0;
        for (i=1; i<=n; ++i)
        {
            scanf("%d",&arr[i]);
            ++arr[i];
            sum+=(getsum(n)-getsum(arr[i]));
            add(arr[i],1);
        }
        int minm=INF;
        for (i=1; i<=n; ++i)
        {
            sum=sum+(n-arr[i])-arr[i]-1);
            if(sum<minm)
                minm=sum;
        }
        printf("%d\n",minm);
    }
    return 0;
}

 

线段树代码 (62ms):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=5010;
struct info
{
    int l,r,mid;
    int sum;
}T[N<<2];
void pushup(int k)
{
    T[k].sum=T[LC(k)].sum+T[RC(k)].sum;
};
void build(int k,int l,int r)
{
    T[k].sum=0;
    T[k].l=l;
    T[k].r=r;
    T[k].mid=MID(l,r);
    if(l==r)
        return ;
    build(LC(k),l,T[k].mid);
    build(RC(k),T[k].mid+1,r);
    //pushup(k);
}
void update(int k,int x,int val)
{
    if(T[k].l==T[k].r&&T[k].l==x)
        T[k].sum+=val;
    else
    {
        if(x<=T[k].mid)
            update(LC(k),x,val);
        else
            update(RC(k),x,val);
        pushup(k);
    }  
}
int range_query(int k,int l,int r)
{
    if(l<=T[k].l&&r>=T[k].r)
        return T[k].sum;
    else
    {
        if(r<=T[k].mid)
            return range_query(LC(k),l,r);
        else if(l>T[k].mid)
            return range_query(RC(k),l,r);
        else
            return range_query(LC(k),l,T[k].mid)+range_query(RC(k),T[k].mid+1,r);
    }
}
int arr[N];
int Scan()
{
    int res=0,ch,flag=0;
    if((ch=getchar())=='-')
        flag=1;
    else if(ch>='0'&&ch<='9')
        res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')
        res=res*10+ch-'0';
    return flag?-res:res;
}
int main(void)
{
    int n,i,j;
    while (~scanf("%d",&n))
    {
        int sum=0,minm=INF;
        build(1,0,N);
        for (i=0; i<n; ++i)
        {
            arr[i]=Scan();
            sum+=range_query(1,arr[i]+1,N);
            update(1,arr[i],1);
        }
        for (i=0; i<n; ++i)
        {
            sum=sum+((n-1)-arr[i])-arr[i];
            if(sum<minm)
                minm=sum;
        }
        printf("%d\n",minm);
    }
    return 0;
}
posted @   Blackops  阅读(182)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示