POJ 1988 Cube Stacking(带权并查集)
Cube Stacking
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 23678 | Accepted: 8299 | |
Case Time Limit: 1000MS |
Description
Farmer John and Betsy are playing a game with N (1 <= N <= 30,000)identical cubes labeled 1 through N. They start with N stacks, each containing a single cube. Farmer John asks Betsy to perform P (1<= P <= 100,000) operation. There are two types of operations:
moves and counts.
* In a move operation, Farmer John asks Bessie to move the stack containing cube X on top of the stack containing cube Y.
* In a count operation, Farmer John asks Bessie to count the number of cubes on the stack with cube X that are under the cube X and report that value.
Write a program that can verify the results of the game.
moves and counts.
* In a move operation, Farmer John asks Bessie to move the stack containing cube X on top of the stack containing cube Y.
* In a count operation, Farmer John asks Bessie to count the number of cubes on the stack with cube X that are under the cube X and report that value.
Write a program that can verify the results of the game.
Input
* Line 1: A single integer, P
* Lines 2..P+1: Each of these lines describes a legal operation. Line 2 describes the first operation, etc. Each line begins with a 'M' for a move operation or a 'C' for a count operation. For move operations, the line also contains two integers: X and Y.For count operations, the line also contains a single integer: X.
Note that the value for N does not appear in the input file. No move operation will request a move a stack onto itself.
* Lines 2..P+1: Each of these lines describes a legal operation. Line 2 describes the first operation, etc. Each line begins with a 'M' for a move operation or a 'C' for a count operation. For move operations, the line also contains two integers: X and Y.For count operations, the line also contains a single integer: X.
Note that the value for N does not appear in the input file. No move operation will request a move a stack onto itself.
Output
Print the output from each of the count operations in the same order as the input file.
Sample Input
6 M 1 6 C 1 M 2 4 M 2 6 C 3 C 4
Sample Output
1 0 2
Source
题目链接:POJ 1988
以前看了很久的题解但是完全看不懂,也是最近会了食物链之后才做的。
既然食物链可以用数值代表关系,那这题只要把取模去掉就可以用数值node[x].up代表自己与祖节点之间的砖块数(不包括本身),然后还有一个问题就是还要知道自己所在砖块堆的总个数node[fx].total(fx是此砖块堆的祖节点即代表)。
那统计up用食物链的思想比较简单就可以做到,关键就是total怎么算,可以设想(画图更好理解),把砖a所在堆放到砖b所在堆,那node[fa].total肯定增加了node[fb].total个,然后node[fa].up显然不变(实际上祖节点就是堆的最上面那块砖的号码),node[fb].total就不要动了,因为只有祖节点才能具有记录total的功能,fb此时已沦为fa下面的一个子节点,node[fb].up还是可以动的,即增加了node[fa].total个。然后这题就差不多解决了,最后输出的时候用本堆砖块数total-本砖块上面的砖块数up-1,减1是因为题目要求只算压在自己这块砖下面的,自己当然不算
代码:
#include<iostream> #include<algorithm> #include<cstdlib> #include<sstream> #include<cstring> #include<bitset> #include<cstdio> #include<string> #include<deque> #include<stack> #include<cmath> #include<queue> #include<set> #include<map> using namespace std; #define INF 0x3f3f3f3f #define CLR(x,y) memset(x,y,sizeof(x)) #define LC(x) (x<<1) #define RC(x) ((x<<1)+1) #define MID(x,y) ((x+y)>>1) typedef pair<int,int> pii; typedef long long LL; const double PI=acos(-1.0); const int N=300010; struct info { int pre; int up; int total; }; info node[N]; void init(int n) { for (int i=0; i<=n; ++i) { node[i].pre=i; node[i].up=0; node[i].total=1; } } int find(int n) { if(node[n].pre==n) return n; int tpre=node[n].pre; node[n].pre=find(node[n].pre); node[n].up=node[n].up+node[tpre].up; return node[n].pre; } void joint(int a,int b) { int fa=find(a),fb=find(b); if(fa!=fb) { node[fb].pre=fa; node[fb].up+=node[fa].total; node[fa].total+=node[fb].total; } } int main(void) { int n,i,j,a,b,x; char ops[3]; while (~scanf("%d",&n)) { init(n); for (i=0; i<n; ++i) { scanf("%s",ops); if(ops[0]=='M') { scanf("%d%d",&a,&b); joint(a,b); } else { scanf("%d",&x); int fx=find(x); printf("%d\n",node[fx].total-node[x].up-1); } } } return 0; }