pandas - drop()函数

函数形式:DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

函数作用:删除DataFrame的指定行、指定列(可以多行多列)。

函数参数:labels是指要删除的标签,一个或者是列表形式的多个,axis是指处哪一个轴,columns是指某一列或者多列,level是指等级,针对多重索引的情况,inplaces是否替换原来的dataframe

复制代码
>>> df = pd.DataFrame(np.arange(12).reshape(3,4),
...                   columns=['A', 'B', 'C', 'D'])
>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
#指定删除相关的列,没有带columns,所以要指出是哪个轴上的
>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
#这里带有columns,所以不用加上axis参数
>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
 
#删除指定索引的行,这里没有axis参数,就是默认axis=0,也就是删除行
>>> df.drop([0, 1])
   A  B   C   D
2  8  9  10  11
 
#多重索引的情况
>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3,0.2]])
>>> df
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2
 
>>> df.drop(index='cow', columns='small')
                big
lama    speed   45.0
        weight  200.0
        length  1.5
falcon  speed   320.0
        weight  1.0
        length  0.3
 
>>> df.drop(index='length', level=1)
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
cow     speed   30.0    20.0
        weight  250.0   150.0
falcon  speed   320.0   250.0
        weight  1.0     0.8
 
#这里不加index参数
df.drop('length', level=0)
 
big    small
lama    speed    45.0    30.0
        weight    200.0    100.0
        length    1.5    1.0
cow        speed    30.0    20.0
        weight    250.0    150.0
        length    1.5    0.8
falcon    speed    320.0    250.0
        weight    1.0    0.8
        length    0.3    0.2
 
复制代码

 

posted on   Black_x  阅读(331)  评论(0编辑  收藏  举报

编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示