Luogu 1941 飞扬的小鸟

题目链接:https://www.luogu.org/problemnew/show/P1941

思路:

这是一道极好的背包练习题。

容易地发现,我们可以把上升的过程与有限制的完全背包联系,下降的过程与$01$背包联系。

因此可以进行分别处理。

对于上升过程,通过画图,我们可以发现它可以从两种进行转移。

一种是从前一个位置来跳跃,另一种则是从当前位置转移。

对于$(i,m)$,我们需要把它在沿途中更新。

对于下降的情况,我们再输入数据时,先确定一个可穿过的区间,然后枚举$j+a[i-1].y$是否满足条件,然后进行转移,其转移方程与上升时的情况、原理类似。

然后记得把不能到的地方重新标记。

最后统计答案即可。

代码:

#include <cstdio>
#include <cctype>
#include <cstring>
#include <iostream>
const int MAXN = 20050;
const int MAXM = 1050;
const int INF = 1 << 30;
using namespace std;
struct node1 {
    int x, y;
} a[MAXN];
struct node2 {
    int p, l, h;
} b[MAXN];
int n, m, k, cnt, ans = INF, up[MAXN], down[MAXN], f[MAXN][MAXM];
bool flag[MAXN];
int read() {
    int x = 0;
    bool sign = false;
    char alpha = 0;
    while (!isdigit(alpha)) sign |= alpha == '-', alpha = getchar();
    while (isdigit(alpha)) x = (x << 1) + (x << 3) + (alpha ^ 48), alpha = getchar();
    return sign ? -x : x;
}
int main() {
    n = read();
    m = read();
    k = read();
    for (int i = 0; i < n; i++) a[i].x = read(), a[i].y = read();
    for (int i = 1; i <= n; i++) up[i] = m + 1;
    for (int i = 1; i <= k; i++) {
        b[i].p = read(), b[i].l = read(), b[i].h = read();
        flag[b[i].p] = true;
        up[b[i].p] = b[i].h;
        down[b[i].p] = b[i].l;
    }
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++) f[i][j] = INF;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (j >= a[i - 1].x)
                f[i][j] = min(f[i][j], min(f[i - 1][j - a[i - 1].x] + 1, f[i][j - a[i - 1].x] + 1));
            if (j == m)
                for (int l = j - a[i - 1].x; l <= m; l++)
                    f[i][j] = min(f[i][j], min(f[i - 1][l] + 1, f[i][l] + 1));
        }
        for (int j = down[i] + 1; j <= up[i] - 1; j++)
            if (j + a[i - 1].y <= m)
                f[i][j] = min(f[i][j], f[i - 1][j + a[i - 1].y]);
        for (int j = 1; j <= down[i]; j++) f[i][j] = INF;
        for (int j = up[i]; j <= m; j++) f[i][j] = INF;
    }
    cnt = k;
    for (int i = n; i >= 1; i--) {
        for (int j = down[i] + 1; j <= up[i] - 1; j++)
            if (f[i][j] < INF)
                ans = min(ans, f[i][j]);
        if (ans != INF)
            break;
        if (up[i] <= m)
            cnt--;
    }
    cnt == k ? (cout << "1" << endl << ans << endl) : (cout << "0" << endl << cnt << endl);
    return 0;
}

 

posted @ 2019-07-09 21:21  BeyondLimits  阅读(146)  评论(0编辑  收藏  举报