爬虫大作业

1.选一个自己感兴趣的主题。

2.用python 编写爬虫程序,从网络上爬取相关主题的数据。

3.对爬了的数据进行文本分析,生成词云。

4.对文本分析结果进行解释说明。

5.写一篇完整的博客,描述上述实现过程、遇到的问题及解决办法、数据分析思想及结论。

6.最后提交爬取的全部数据、爬虫及数据分析源代码。

 

前言:由于自己对赛车情有独钟,所以本次作业去爬取腾讯F1赛车频道的列表页中的有关新闻

实现过程:

  1. 首先找到列表页,通过开发者工具获取到每条新闻列表的链接,进入新闻详细页面。
  2. 进入新闻详细页面后,通过开发者工具去获取正文的内容,发现正文都是用一对<p class="text">标签存放的

遇到的问题:

       由于正文的内容都是用一对对<p class="text">存放的,刚开始的时候用for循环去寻找<p class="text">的个数,这种方法对于一条新闻有用,但对其他的新闻会报错,所以经过一番思考才想到了用现在这种方法,即先找到所有带这个标签的元素,再统计个数,这样就不会出现报错了。

详细代码如下:

import requests
from bs4 import BeautifulSoup
import jieba
import re


# 将得到的新闻内容写入文件
def write_news_to_document(filename, content):
    f = open(filename, 'w', encoding='utf-8')
    for detail in content:
        f.write(detail['content'])
    f.close()


# 将得到的关键词写入文件
def write_keywords_to_document(filename, keywords):
    f = open(filename, 'w', encoding='utf-8')
    for word in keywords:
        f.write('  ' + word)
    f.close()


# 通过jieba分词得到关键词
def get_keywords(filename):
    f = open(filename, 'r', encoding='utf-8')
    content = f.read()
    f.close()
    word_set = set(jieba.lcut(''.join(re.findall("[\u4e00-\u9fa5_a-zA-Z0-9]", content))))
    # 通过正则表达式选取中文,字母及数字字符数组,拼接为无标点字符内容,再转换为字符集合
    word_dict = {}
    delete_list = []
    keywords = []
    for a in word_set:
        word_dict[a] = content.count(a)  # 生成词云字典
    for j in word_dict.keys():
        if len(j) < 2:
            delete_list.append(j)  # 生成单字无意义字符列表
    for k in delete_list:
        del word_dict[k]  # 在词云字典中删除无意义字符
    dict_list = list(word_dict.items())
    dict_list.sort(key=lambda item: item[1], reverse=True)
    for dict in dict_list:
        keywords.append(dict[0])
    print(keywords)
    write_keywords_to_document("NewsKeyword.txt", keywords)


# 获取详细新闻内容
def get_news_detail(news_url):
    res_d = requests.get(news_url)
    res_d.encoding = 'gbk'
    soup_d = BeautifulSoup(res_d.text, 'html.parser')
    content = ''
    for p in range(0, len(soup_d.select(".text"))):
        content += soup_d.select('.text')[p].text + '\n'
    detail = {'content': content}
    return detail


# 获取新闻列表
def get_news_list(list_url):
    res = requests.get(list_url)
    res.encoding = 'gbk'
    soup = BeautifulSoup(res.text, 'html.parser')
    page_detail = []
    for newsList in soup.select('.newslist')[0].select('li'):
        news_detail = get_news_detail(newsList.select('a')[0]['href'])
        page_detail.append(news_detail)
    return page_detail


# 添加自定义词汇
jieba.add_word('维斯塔潘')
jieba.add_word('维特尔')
jieba.add_word("范多恩")
jieba.add_word("加斯利")
jieba.add_word("托斯特")
jieba.add_word("小红牛")
jieba.add_word("大红牛")
jieba.add_word("库比卡")
jieba.add_word("马格努森")
jieba.add_word("倍耐力")
jieba.add_word("博塔斯")
jieba.add_word("罗斯伯格")
jieba.add_word("红牛车队")

# 主函数
url = "http://sports.qq.com/l/f1/allf1news/list20100311191657.htm"
Page_detail = get_news_list(url)
write_news_to_document("News.txt", Page_detail)
# 由于只有100页列表,所以循环范围是2到101
for i in range(2, 101):
    news_url = "http://sports.qq.com/l/f1/allf1news/list20100311191657_{}.htm".format(i)
    Page_detail = get_news_list(url)
    write_news_to_document("News.txt", Page_detail)
get_keywords("News.txt")

 生成的词云结果图如下:

由此可以看出,赛车新闻通常报道车手的表现,对赛场上各种事情的看法,比赛时使用的战术以及赛车的各个部件情况

结果如下:附件下载

 

 

posted @ 2018-04-29 16:15  165邝启彬  阅读(274)  评论(0编辑  收藏  举报