Tensorflow基础-mnist数据集

MNIST数据集,每张图片包含28*28个像素,把一个数组展开成向量,长度为28*28=784,故数据集中mnist.train.images是一个形状为[60000,784]的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片的像素点,像素的强度介于0-1。

MNIST数据集的标签是介于0-9的数字,要把标签转化成“one_hot vectors"。 一个one_hot向量除了某一位数字是1以外,其余维度数字都是0,比如将标签0表示为([1,0,0,0,0,0,0,0,0,0])

故 mnist.train.labels是一个[60000,10]的数字矩阵。

高斯分布的概率密度函数

              

numpy中

numpy.random.normal(loc=0.0, scale=1.0, size=None)  

参数的意义为:

loc:float

概率分布的均值,对应着整个分布的中心center

scale:float

概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高

size:int or tuple of ints

输出的shape,默认为None,只输出一个值

我们更经常会用到np.random.randn(size)所谓标准正太分布(μ=0, σ=1),对应于np.random.normal(loc=0, scale=1, size)

 

  1. import numpy as np  
  2. n=np.random.normal(0,1.0)  
  3. print n  

 

 

posted @ 2017-12-03 19:21  爱学英语的程序媛  阅读(307)  评论(0编辑  收藏  举报