Title

CF 336494 B. Divisor Subtraction

B. Divisor Subtraction

You are given an integer number n. The following algorithm is applied to it:

  1. if n=0, then end algorithm;
  2. find the smallest prime divisor d of n;
  3. subtract d from n and go to step 1.

Determine the number of subtrations the algorithm will make.

Input

The only line contains a single integer n (2≤n≤10,2≤n≤10).

Output

Print a single integer — the number of subtractions the algorithm will make.

Examples

input

5

output

1

input

4

output

2

Note

In the first example 5 is the smallest prime divisor, thus it gets subtracted right away to make a 0.

In the second example 2 is the smallest prime divisor at both steps.

题意

将一个数n减去其最小质因数,若差为0,则终止进程,否则,重复减去最小质因数的操作。

统计一下相减的次数。

思路(复盘)

  1. 按照题意发现,若数为偶数,其最小质因数为2,减完后其仍然为偶数,其最小质因数仍然为2,此时将会一直减2,直到为0。
  2. 质数按奇偶性分,可将2单独归为一类,另将其他非2的归为一类。而结合思路1可知,我们需要着重考虑的是当n为奇数的情况,而当n为奇数时,其最小质因数必不为偶数,为奇数,且当奇数减去奇数质因数时,结果为偶数,从而进入到思路1的解法中。
#include<bits/stdc++.h>
using namespace std;

long long get_prime(long long n)
{
	for(long long i=2;i*i<=n;i++)
	{
		if(n%i==0)
		   return i;
	}	   return n;
}
int main()
{
	long long n,cnt=0;
	cin>>n;
    if(n%2!=0)
	{
	    n=n-get_prime(n);   
	    cnt++;
	}
	
	cout<<cnt+n/2;
	return 0;
}
posted @ 2021-07-14 13:04  BeautifulWater  阅读(49)  评论(0编辑  收藏  举报