CF 1095C Powers Of Two(二进制拆分)
CF 1095C Powers Of Two(二进制拆分)
A positive integer xx is called a power of two if it can be represented as x=2y, where y is a non-negative integer. So, the powers of two are 1,2,4,8,16,…
You are given two positive integers nn and k. Your task is to represent nn as the sumof exactly k powers of two.
Input
The only line of the input contains two integers nn and k (1≤n≤109, 1≤k≤2⋅105).
Output
If it is impossible to represent nn as the sum of k powers of two, print NO.
Otherwise, print YES, and then print kk positive integers b1,b2,…,bk such that each of bibi is a power of two, and ∑i=1kbi=n. If there are multiple answers, you may print any of them.
Examples
Input
9 4
output
Copy
YES
1 2 2 4
input
Copy
8 1
output
Copy
YES
8
input
Copy
5 1
output
Copy
NO
input
Copy
3 7
output
Copy
NO
题意
-
判断一个数n是否可以由k个2的p次幂来组成,p为自然数,p任取。
-
第一大类情况,判断有没有组成可能
- k过多,有些数会被轮空,极端情况下,n可以有n个2的0次幂来组成,而当k大于n时,会有多余的数。所以在这种情况也不可能组成。
- k过少,n转换成二进制后中1的各数即这个数所需要1的个数的最少的个数,若k少于这个个数,那么不可能组成。
-
第二大类情况,如果有组成的可能
- 刚刚好
- 没刚刚好,在二进制中,高位的1可以由两个低一位的1来组成。注意这里要从最高位开始分解,若从中间开始分解,将达不到最大的k的范围(忽视了前面一的分解,将前面1给滞空了)
#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
int main()
{
int n,k;
cin>>n>>k;
int cnt2=0,p=0,a[1000];
int copy=n;
while(copy>0)
{
if(copy&1)
cnt2++;
a[p++]=copy&1;
copy=copy>>1;
}
if(k>n||cnt2>k)
{
cout<<"NO";
}
else
{
cout<<"YES"<<endl;
if(cnt2==k)
{
}
else
{
while(cnt2!=k)
{
for(int i=p-1;i>=1;i--)
{
if(a[i]>0)
{
a[i]-=1;
a[i-1]=a[i-1]+2;
cnt2++;
if(cnt2==k)
break;
}
}
}
}
for(int i=0;i<p;i++)
{
for(int j=0;j<a[i];j++)
{
cout<<int(pow(2,i))<<" ";
}
}
}
return 0;
}
注意:pow函数返回的是浮点数,超过一定位数后,会用科学计数法表示