【BZOJ2663】灵魂宝石 [二分]

灵魂宝石

Time Limit: 5 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  “作为你们本体的灵魂,为了能够更好的运用魔法,被赋予了既小巧又安全的外形”
  我们知道,魔法少女的生命被存放于一个称为灵魂宝石(Soul Gem)的装置内。
  而有时,当灵魂宝石与躯体的距离较远时,魔法少女就无法控制自己的躯体了。
  在传说中,魔法少女 Abel仅通过推理就得到了这个现象的一般法则,被称为Abel定理:
  存在宇宙常量 R(是一个非负实数,或正无穷) ,被称为灵魂宝石常量,量纲为空间度量(即:长度)。
  如果某个魔法少女的灵魂宝石与她的躯体的距离严格超过 R,则她一定无法控制自己的躯体;如果这个距离严格小于 R,则她一定可以控制自己的躯体。 (这里的距离指平面的 Euclid距离。)
  注意:该定理不能预言距离刚好为 R 的情形。
  可能存在魔法少女 A 和 B,她们离自己的灵魂宝石的距离都恰好为 R,但是 A可以控制自己的躯体,而 B 不可以。
  现在这个世界上再也没有魔法少女了,但是我们却对这个宇宙常量感兴趣。
  我们只能通过之前的世界遗留下来的数据来确定这个常量的范围了。
  每一组数据包含以下信息:
    ·一共有N 个魔法少女及她们的灵魂宝石,分别编号为 1~N。
    ·这 N个魔法少女所在的位置是(Xi, Yi)。
    ·这 N个灵魂宝石所在的位置是(xi, yi)。
    ·此时恰好有 K个魔法少女能够控制自己的躯体。
  需要注意的是:
    1. 我们认为这个世界是二维的 Euclid 空间。
    2. 魔法少女与灵魂宝石之间的对应关系是未知的。
    3. 我们不知道是具体是哪 K个魔法少女能够控制自己的躯体。
  根据以上信息,你需要确定灵魂宝石常量 R可能的最小值 Rmin 和最大值 Rmax。

Input

  第一行包两个整数:N、K。 
  接下来 N行,每行包含两个整数:Xi , Yi ,由空格隔开。 
  再接下来N 行,每行包含两个整数:xi , yi ,由空格隔开。 

Output

  输出两个量:Rmin、Rmax,中间用空格隔开。 
  Rmin 一定是一个非负实数,四舍五入到小数点后两位。 
  Rmax 可能是非负实数,或者是正无穷: 
  如果是非负实数,四舍五入到小数点后两位; 
  如果是正无穷,输出“+INF”(不包含引号)。

Sample Input

  2 1
  1 0
  4 0
  0 0
  4 4

Sample Output

  1.00 5.00

HINT

  对于100%的数据: 
  1 ≤  N  ≤  50, 
  0 ≤  K  ≤  N, 
  -1000 ≤  xi, yi , Xi , Yi  ≤  1000。 

Main idea

  有n个人匹配n个宝石,每个人和宝石有一个坐标,R为自己给定的值,如果在平面内人和宝石的距离<R则一定匹配,距离=R可取可不取,距离>R则一定无法取,求使得可以取到k个匹配的R的最小值和最大值。

Solution

  求最小值最大值,想到了二分答案,然后我们可以直观地看出可以使用二分图匹配来进行求匹配问题,二分一个R,如果人和宝石的距离<=R则连边,判断是否可行,这样我们可以求出最小的R。

  发现最大的R无法这么取,因为可能有距离=R的情况,所以我们反向思考,考虑枚举一个R,距离>=R的连边,判断是否有<n-k个无法匹配,则可以求得R的最大值。

Code

  1 #include<iostream>  
  2 #include<algorithm>  
  3 #include<cstdio>  
  4 #include<cstring>  
  5 #include<cstdlib>  
  6 #include<cmath>  
  7 using namespace std;  
  8      
  9 const int ONE=101;
 10  
 11 int n,k;
 12 double l,mid,r;
 13 double x,y;
 14 int vis[ONE];
 15 int f[ONE][ONE],my[ONE];
 16 double X[ONE],Y[ONE];
 17 double dist[ONE][ONE];
 18  
 19 int get() 
 20 { 
 21         int res,Q=1;    char c;
 22         while( (c=getchar())<48 || c>57)
 23         if(c=='-')Q=-1;
 24         if(Q) res=c-48; 
 25         while((c=getchar())>=48 && c<=57) 
 26         res=res*10+c-48; 
 27         return res*Q; 
 28 }
 29  
 30 int find(int i)
 31 {
 32         for(int j=1;j<=n;j++)
 33         {
 34             if(f[i][j] && !vis[j])
 35             {
 36                 vis[j]=1;
 37                 if(!my[j] || find(my[j]))
 38                 {
 39                     my[j]=i;
 40                     return 1;
 41                 }
 42             }
 43         }
 44         return 0;
 45 }
 46  
 47 double Getdis(double x1,double y1,double x2,double y2)
 48 {
 49         return sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) );
 50 }
 51  
 52 int Check_first(double x)
 53 {
 54         memset(my,0,sizeof(my));
 55         for(int i=1;i<=n;i++)
 56         for(int j=1;j<=n;j++)
 57         {
 58             f[i][j]=(dist[i][j]<=x); 
 59         }
 60          
 61         int Ans=0;
 62         for(int i=1;i<=n;i++)
 63         {
 64             memset(vis,0,sizeof(vis));
 65             if(find(i)) Ans++;
 66         }
 67          
 68         return Ans>=k;
 69 }
 70  
 71 int Check_second(double x)
 72 {
 73         memset(my,0,sizeof(my));
 74         for(int i=1;i<=n;i++)
 75         for(int j=1;j<=n;j++)
 76         {
 77             f[i][j]=(dist[i][j]>=x); 
 78         }
 79          
 80         int Ans=0;
 81         for(int i=1;i<=n;i++)
 82         {
 83             memset(vis,0,sizeof(vis));
 84             if(find(i)) Ans++;
 85         }
 86          
 87         return Ans<=n-k-1;
 88 }
 89  
 90 int main()
 91 {
 92         n=get();    k=get();
 93         for(int i=1;i<=n;i++)
 94         {
 95             scanf("%lf %lf",&X[i],&Y[i]);
 96         }
 97          
 98         for(int i=1;i<=n;i++)
 99         {
100             scanf("%lf %lf",&x,&y);
101             for(int j=1;j<=n;j++)
102             dist[j][i]=Getdis(X[j],Y[j],x,y);
103         }
104          
105          
106         l=0.0;  r=3500.0;
107          
108         while(l<r-0.001)
109         {
110             mid=(l+r)/2.0;
111             if(Check_first(mid)) r=mid;
112             else l=mid;
113         }
114         if(Check_first(l)) printf("%.2lf ",l);
115         else printf("%.2lf ",r);
116          
117          
118         l=0.0;  r=3500.0;
119          
120         while(l<r-0.001)
121         {
122             mid=(l+r)/2.0;
123             if(Check_second(mid)) r=mid;
124             else l=mid;
125         }
126          
127         double ans;
128         if(Check_second(r)) ans=r;
129         else ans=l;
130          
131         if(fabs(ans-3500.0)<=0.01) printf("+INF");
132         else printf("%.2lf",ans);
133 }
View Code

 

posted @ 2017-02-22 17:21  BearChild  阅读(250)  评论(0编辑  收藏  举报