实验三 朴素贝叶斯算法及应用
博客班级 | 机器学习18级 |
---|---|
作业要求 | 实验三 朴素贝叶斯算法及应用 |
学号 | 3180701308 |
【实验目的】
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
【实验内容】
1.实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
【实验报告要求】
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5.讨论朴素贝叶斯算法的优缺点。
实验代码:
import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = [
'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
]
data = np.array(df.iloc[:100, :])
# print(data)
return data[:, :-1], data[:, -1]
X_test[0], y_test[0]
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
return sum(X) / float(len(X))
# 标准差(方差)
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x - mean, 2) /
(2 * math.pow(stdev, 2))))
return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {
label: self.summarize(value)
for label, value in data.items()
}
return 'gaussianNB train done!'
# 计算概率
def calculate_probabilities(self, input_data):
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(
input_data[i], mean, stdev)
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(
self.calculate_probabilities(X_test).items(),
key=lambda x: x[-1])[-1][0]
return label
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4, 3.2, 1.3, 0.2]))
model.score(X_test, y_test)
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
clf.predict([[4.4, 3.2, 1.3, 0.2]])
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
运行截图
实验小结:
1、朴素贝叶斯的应用场景
需要一个比较容易解释,而且不同维度之间相关性较小的模型的时候。可以高效处理高维数据,虽然结果可能不尽如人意。
2、讨论朴素贝叶斯算法的优缺点。
优点
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已;
对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练);
对缺失数据不太敏感,算法也比较简单,常用于文本分类;
朴素贝叶斯对结果解释容易理解。
缺点
需要计算先验概率;
分类决策存在错误率;
对输入数据的表达形式很敏感;
由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。