fast-fail事件的产生及其解决办法
1、fail-fast事件出现的情景
1 import java.util.*; 2 import java.util.concurrent.*; 3 4 /* 5 * 6 * 7 * fail-fast事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。 8 * fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fail-fast事件。 9 * 10 * 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fail-fast事件。 11 * (01) 使用ArrayList时,会产生fail-fast事件,抛出ConcurrentModificationException异常;定义如下: 12 * private static List<String> list = new ArrayList<String>(); 13 * (02) 使用时CopyOnWriteArrayList,不会产生fail-fast事件;定义如下: 14 * private static List<String> list = new CopyOnWriteArrayList<String>(); 15 * 16 */ 17 public class FastFailTest { 18 19 private static List<String> list = new ArrayList<String>(); 20 //private static List<String> list = new CopyOnWriteArrayList<String>(); 21 public static void main(String[] args) { 22 23 // 同时启动两个线程对list进行操作! 24 new ThreadOne().start(); 25 new ThreadTwo().start(); 26 } 27 28 private static void printAll() { 29 System.out.println(""); 30 31 String value = null; 32 Iterator iter = list.iterator(); 33 while(iter.hasNext()) { 34 value = (String)iter.next(); 35 System.out.print(value+", "); 36 } 37 } 38 39 /** 40 * 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list 41 */ 42 private static class ThreadOne extends Thread { 43 public void run() { 44 int i = 0; 45 while (i<6) { 46 list.add(String.valueOf(i)); 47 printAll(); 48 i++; 49 } 50 } 51 } 52 53 /** 54 * 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list 55 */ 56 private static class ThreadTwo extends Thread { 57 public void run() { 58 int i = 10; 59 while (i<16) { 60 list.add(String.valueOf(i)); 61 printAll(); 62 i++; 63 } 64 } 65 } 66 67 }
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
2、fail-fast的简单介绍
fail-fas机制是Java集合中的一种错误检测,当多个线程对同一个集合进行操作的时候,就可能会产生这样的错误。举例来说:当某一个线程A通过Iterator遍历集合的过程中,若该集合中的内容被另外一个线程改变了,那么当线程A在遍历集合的过程中就会出现ConcurrentModificationException异常,这就是产生了产生fail-fast事件。
3、fail-fast的产生原理
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
1 package java.util; 2 3 public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { 4 5 ... 6 7 // AbstractList中唯一的属性 8 // 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1 9 protected transient int modCount = 0; 10 11 // 返回List对应迭代器。实际上,是返回Itr对象。 12 public Iterator<E> iterator() { 13 return new Itr(); 14 } 15 16 // Itr是Iterator(迭代器)的实现类 17 private class Itr implements Iterator<E> { 18 int cursor = 0; 19 20 int lastRet = -1; 21 22 // 修改数的记录值。 23 // 每次新建Itr()对象时,都会保存新建该对象时对应的modCount; 24 // 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等; 25 // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。 26 int expectedModCount = modCount; 27 28 public boolean hasNext() { 29 return cursor != size(); 30 } 31 32 public E next() { 33 // 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等; 34 // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。 35 checkForComodification(); 36 try { 37 E next = get(cursor); 38 lastRet = cursor++; 39 return next; 40 } catch (IndexOutOfBoundsException e) { 41 checkForComodification(); 42 throw new NoSuchElementException(); 43 } 44 } 45 46 public void remove() { 47 if (lastRet == -1) 48 throw new IllegalStateException(); 49 checkForComodification(); 50 51 try { 52 AbstractList.this.remove(lastRet); 53 if (lastRet < cursor) 54 cursor--; 55 lastRet = -1; 56 expectedModCount = modCount; 57 } catch (IndexOutOfBoundsException e) { 58 throw new ConcurrentModificationException(); 59 } 60 } 61 62 final void checkForComodification() { 63 if (modCount != expectedModCount) 64 throw new ConcurrentModificationException(); 65 } 66 } 67 68 ... 69 }
从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()函数。若 “modCount 不等于 expectedModCount”,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中可以得知 expectedModCount的值在创建Itr对象时被赋值为 modCount。通过Itr,expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。
1 package java.util; 2 3 public class ArrayList<E> extends AbstractList<E> 4 implements List<E>, RandomAccess, Cloneable, java.io.Serializable 5 { 6 7 ... 8 9 // list中容量变化时,对应的同步函数 10 public void ensureCapacity(int minCapacity) { 11 modCount++; 12 int oldCapacity = elementData.length; 13 if (minCapacity > oldCapacity) { 14 Object oldData[] = elementData; 15 int newCapacity = (oldCapacity * 3)/2 + 1; 16 if (newCapacity < minCapacity) 17 newCapacity = minCapacity; 18 // minCapacity is usually close to size, so this is a win: 19 elementData = Arrays.copyOf(elementData, newCapacity); 20 } 21 } 22 23 24 // 添加元素到队列最后 25 public boolean add(E e) { 26 // 修改modCount 27 ensureCapacity(size + 1); // Increments modCount!! 28 elementData[size++] = e; 29 return true; 30 } 31 32 33 // 添加元素到指定的位置 34 public void add(int index, E element) { 35 if (index > size || index < 0) 36 throw new IndexOutOfBoundsException( 37 "Index: "+index+", Size: "+size); 38 39 // 修改modCount 40 ensureCapacity(size+1); // Increments modCount!! 41 System.arraycopy(elementData, index, elementData, index + 1, 42 size - index); 43 elementData[index] = element; 44 size++; 45 } 46 47 // 添加集合 48 public boolean addAll(Collection<? extends E> c) { 49 Object[] a = c.toArray(); 50 int numNew = a.length; 51 // 修改modCount 52 ensureCapacity(size + numNew); // Increments modCount 53 System.arraycopy(a, 0, elementData, size, numNew); 54 size += numNew; 55 return numNew != 0; 56 } 57 58 59 // 删除指定位置的元素 60 public E remove(int index) { 61 RangeCheck(index); 62 63 // 修改modCount 64 modCount++; 65 E oldValue = (E) elementData[index]; 66 67 int numMoved = size - index - 1; 68 if (numMoved > 0) 69 System.arraycopy(elementData, index+1, elementData, index, numMoved); 70 elementData[--size] = null; // Let gc do its work 71 72 return oldValue; 73 } 74 75 76 // 快速删除指定位置的元素 77 private void fastRemove(int index) { 78 79 // 修改modCount 80 modCount++; 81 int numMoved = size - index - 1; 82 if (numMoved > 0) 83 System.arraycopy(elementData, index+1, elementData, index, 84 numMoved); 85 elementData[--size] = null; // Let gc do its work 86 } 87 88 // 清空集合 89 public void clear() { 90 // 修改modCount 91 modCount++; 92 93 // Let gc do its work 94 for (int i = 0; i < size; i++) 95 elementData[i] = null; 96 97 size = 0; 98 } 99 100 ... 101 }
从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“线程a”,并在“线程a”中通过Iterator反复的读取arrayList的值。
(04) 新建一个“线程b”,在“线程b”中删除arrayList中的一个“节点A”。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中,创建arrayList时,expectedModCount = modCount(假设它们此时的值为N)。在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时modCount变成了N+1!“线程a”此时会接着遍历,当它执行到next()函数时,调用checkForComodification()函数比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”两者不再相等,这样就会抛出ConcurrentModificationException异常,产生fail-fast事件。
4、fail-fast的解决办法
若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。
将
private static List<String> list = new ArrayList<String>();
改为:
private static List<String> list = new CopyOnWriteArrayList<String>();
就可以解决问题。
关于ArrayList和CopyOnWriteArrayList的小总结:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03)
ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount’和‘modCount’的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常!CopyOnWriteArrayList不会抛ConcurrentModificationException,是因为所有改变其内容的操作(add、remove、clear等),都会copy一份现有数据,在现有数据上修改好,在把原有数据的引用改成指向修改后的数据。而不是在读的时候copy。