PCL学习(二)三维模型转点云 obj转pcd----PCL实现
#include <pcl/io/io.h> #include <pcl/io/pcd_io.h> #include <pcl/io/obj_io.h> #include <pcl/PolygonMesh.h> //#include <pcl/ros/conversions.h>//formROSMsg所属头文件; #include <pcl/point_cloud.h> #include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件; //#include <pcl/visualization/pcl_visualizer.h> using namespace std; using namespace pcl; int main() { pcl::PolygonMesh mesh; pcl::io::loadPolygonFile("sofa.obj", mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::fromPCLPointCloud2(mesh.cloud, *cloud); pcl::io::savePCDFileASCII("result.pcd", *cloud); cout << cloud->size() << endl; cout << "OK!"; cin.get(); return 0; }
- 转换前的obj模型
- 转换成pcd点云后
提取3D模型的meshes的顶点(Vertex)坐标,对于点云来说点数不够,而且在3D模型存在平面或者是简单立方体的情况下几乎没有点。
所以又需要PCL库了,pcl_mesh_sampling可以轻松解决这个问题。
它是通过调用VTK(Visualization ToolKit)读取模型,在3D模型平面均匀地采样点然后生成点云,并且你可以选择需要的点数, 以及voxel grid的采样距离。
#include <pcl/visualization/pcl_visualizer.h> #include <pcl/io/pcd_io.h> #include <pcl/io/vtk_lib_io.h> #include <pcl/common/transforms.h> #include <vtkVersion.h> #include <vtkPLYReader.h> #include <vtkOBJReader.h> #include <vtkTriangle.h> #include <vtkTriangleFilter.h> #include <vtkPolyDataMapper.h> #include <pcl/filters/voxel_grid.h> #include <pcl/console/print.h> #include <pcl/console/parse.h> inline double uniform_deviate (int seed) { double ran = seed * (1.0 / (RAND_MAX + 1.0)); return ran; } inline void randomPointTriangle (float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3, Eigen::Vector4f& p) { float r1 = static_cast<float> (uniform_deviate (rand ())); float r2 = static_cast<float> (uniform_deviate (rand ())); float r1sqr = std::sqrt (r1); float OneMinR1Sqr = (1 - r1sqr); float OneMinR2 = (1 - r2); a1 *= OneMinR1Sqr; a2 *= OneMinR1Sqr; a3 *= OneMinR1Sqr; b1 *= OneMinR2; b2 *= OneMinR2; b3 *= OneMinR2; c1 = r1sqr * (r2 * c1 + b1) + a1; c2 = r1sqr * (r2 * c2 + b2) + a2; c3 = r1sqr * (r2 * c3 + b3) + a3; p[0] = c1; p[1] = c2; p[2] = c3; p[3] = 0; } inline void randPSurface (vtkPolyData * polydata, std::vector<double> * cumulativeAreas, double totalArea, Eigen::Vector4f& p, bool calcNormal, Eigen::Vector3f& n) { float r = static_cast<float> (uniform_deviate (rand ()) * totalArea); std::vector<double>::iterator low = std::lower_bound (cumulativeAreas->begin (), cumulativeAreas->end (), r); vtkIdType el = vtkIdType (low - cumulativeAreas->begin ()); double A[3], B[3], C[3]; vtkIdType npts = 0; vtkIdType *ptIds = NULL; polydata->GetCellPoints (el, npts, ptIds); polydata->GetPoint (ptIds[0], A); polydata->GetPoint (ptIds[1], B); polydata->GetPoint (ptIds[2], C); if (calcNormal) { // OBJ: Vertices are stored in a counter-clockwise order by default Eigen::Vector3f v1 = Eigen::Vector3f (A[0], A[1], A[2]) - Eigen::Vector3f (C[0], C[1], C[2]); Eigen::Vector3f v2 = Eigen::Vector3f (B[0], B[1], B[2]) - Eigen::Vector3f (C[0], C[1], C[2]); n = v1.cross (v2); n.normalize (); } randomPointTriangle (float (A[0]), float (A[1]), float (A[2]), float (B[0]), float (B[1]), float (B[2]), float (C[0]), float (C[1]), float (C[2]), p); } void uniform_sampling (vtkSmartPointer<vtkPolyData> polydata, size_t n_samples, bool calc_normal, pcl::PointCloud<pcl::PointNormal> & cloud_out) { polydata->BuildCells (); vtkSmartPointer<vtkCellArray> cells = polydata->GetPolys (); double p1[3], p2[3], p3[3], totalArea = 0; std::vector<double> cumulativeAreas (cells->GetNumberOfCells (), 0); size_t i = 0; vtkIdType npts = 0, *ptIds = NULL; for (cells->InitTraversal (); cells->GetNextCell (npts, ptIds); i++) { polydata->GetPoint (ptIds[0], p1); polydata->GetPoint (ptIds[1], p2); polydata->GetPoint (ptIds[2], p3); totalArea += vtkTriangle::TriangleArea (p1, p2, p3); cumulativeAreas[i] = totalArea; } cloud_out.points.resize (n_samples); cloud_out.width = static_cast<pcl::uint32_t> (n_samples); cloud_out.height = 1; for (i = 0; i < n_samples; i++) { Eigen::Vector4f p; Eigen::Vector3f n; randPSurface (polydata, &cumulativeAreas, totalArea, p, calc_normal, n); cloud_out.points[i].x = p[0]; cloud_out.points[i].y = p[1]; cloud_out.points[i].z = p[2]; if (calc_normal) { cloud_out.points[i].normal_x = n[0]; cloud_out.points[i].normal_y = n[1]; cloud_out.points[i].normal_z = n[2]; } } } using namespace pcl; using namespace pcl::io; using namespace pcl::console; const int default_number_samples = 100000; const float default_leaf_size = 0.01f; void printHelp (int, char **argv) { print_error ("Syntax is: %s input.{ply,obj} output.pcd <options>\n", argv[0]); print_info (" where options are:\n"); print_info (" -n_samples X = number of samples (default: "); print_value ("%d", default_number_samples); print_info (")\n"); print_info ( " -leaf_size X = the XYZ leaf size for the VoxelGrid -- for data reduction (default: "); print_value ("%f", default_leaf_size); print_info (" m)\n"); print_info (" -write_normals = flag to write normals to the output pcd\n"); print_info ( " -no_vis_result = flag to stop visualizing the generated pcd\n"); } /* ---[ */ int main (int argc, char **argv) { print_info ("Convert a CAD model to a point cloud using uniform sampling. For more information, use: %s -h\n", argv[0]); if (argc < 3) { printHelp (argc, argv); return (-1); } // Parse command line arguments int SAMPLE_POINTS_ = default_number_samples; parse_argument (argc, argv, "-n_samples", SAMPLE_POINTS_); float leaf_size = default_leaf_size; parse_argument (argc, argv, "-leaf_size", leaf_size); bool vis_result = ! find_switch (argc, argv, "-no_vis_result"); const bool write_normals = find_switch (argc, argv, "-write_normals"); // Parse the command line arguments for .ply and PCD files std::vector<int> pcd_file_indices = parse_file_extension_argument (argc, argv, ".pcd"); if (pcd_file_indices.size () != 1) { print_error ("Need a single output PCD file to continue.\n"); return (-1); } std::vector<int> ply_file_indices = parse_file_extension_argument (argc, argv, ".ply"); std::vector<int> obj_file_indices = parse_file_extension_argument (argc, argv, ".obj"); if (ply_file_indices.size () != 1 && obj_file_indices.size () != 1) { print_error ("Need a single input PLY/OBJ file to continue.\n"); return (-1); } vtkSmartPointer<vtkPolyData> polydata1 = vtkSmartPointer<vtkPolyData>::New (); if (ply_file_indices.size () == 1) { pcl::PolygonMesh mesh; pcl::io::loadPolygonFilePLY (argv[ply_file_indices[0]], mesh); pcl::io::mesh2vtk (mesh, polydata1); } else if (obj_file_indices.size () == 1) { vtkSmartPointer<vtkOBJReader> readerQuery = vtkSmartPointer<vtkOBJReader>::New (); readerQuery->SetFileName (argv[obj_file_indices[0]]); readerQuery->Update (); polydata1 = readerQuery->GetOutput (); } //make sure that the polygons are triangles! vtkSmartPointer<vtkTriangleFilter> triangleFilter = vtkSmartPointer<vtkTriangleFilter>::New (); #if VTK_MAJOR_VERSION < 6 triangleFilter->SetInput (polydata1); #else triangleFilter->SetInputData (polydata1); #endif triangleFilter->Update (); vtkSmartPointer<vtkPolyDataMapper> triangleMapper = vtkSmartPointer<vtkPolyDataMapper>::New (); triangleMapper->SetInputConnection (triangleFilter->GetOutputPort ()); triangleMapper->Update (); polydata1 = triangleMapper->GetInput (); bool INTER_VIS = false; if (INTER_VIS) { visualization::PCLVisualizer vis; vis.addModelFromPolyData (polydata1, "mesh1", 0); vis.setRepresentationToSurfaceForAllActors (); vis.spin (); } pcl::PointCloud<pcl::PointNormal>::Ptr cloud_1 (new pcl::PointCloud<pcl::PointNormal>); uniform_sampling (polydata1, SAMPLE_POINTS_, write_normals, *cloud_1); if (INTER_VIS) { visualization::PCLVisualizer vis_sampled; vis_sampled.addPointCloud<pcl::PointNormal> (cloud_1); if (write_normals) vis_sampled.addPointCloudNormals<pcl::PointNormal> (cloud_1, 1, 0.02f, "cloud_normals"); vis_sampled.spin (); } // Voxelgrid VoxelGrid<PointNormal> grid_; grid_.setInputCloud (cloud_1); grid_.setLeafSize (leaf_size, leaf_size, leaf_size); pcl::PointCloud<pcl::PointNormal>::Ptr voxel_cloud (new pcl::PointCloud<pcl::PointNormal>); grid_.filter (*voxel_cloud); if (vis_result) { visualization::PCLVisualizer vis3 ("VOXELIZED SAMPLES CLOUD"); vis3.addPointCloud<pcl::PointNormal> (voxel_cloud); if (write_normals) vis3.addPointCloudNormals<pcl::PointNormal> (voxel_cloud, 1, 0.02f, "cloud_normals"); vis3.spin (); } if (!write_normals) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz (new pcl::PointCloud<pcl::PointXYZ>); // Strip uninitialized normals from cloud: pcl::copyPointCloud (*voxel_cloud, *cloud_xyz); savePCDFileASCII (argv[pcd_file_indices[0]], *cloud_xyz); } else { savePCDFileASCII (argv[pcd_file_indices[0]], *voxel_cloud); } }