Java解惑(转)

数值表达式


1. 奇偶判断

不要使用 i % 2 == 1 来判断是否是奇数,因为i为负奇数时不成立,请使用 i % 2 != 0 来判断是否是奇数,或使用 高效式 (i & 1) != 0来判断。


2. 小数精确计算 

  System.out.println(2.00 -1.10);//0.8999999999999999

 

上面的计算出的结果不是 0.9,而是一连串的小数。问题在于1.1这个数字不能被精确表示为一个double,因此它被表示为最接近它的double值,该程序从2中减去的就是这个值,但这个计算的结果并不是最接近0.9的double值。


一般地说,问题在于并不是所有的小数都可以用二进制浮点数精确表示。 二进制浮点对于货币计算是非常不适合的,因为它不可能将1.0表示成10的其他任何负次幂。 

解决问题的第一种方式是使用货币的最小单位(分)来表示: 

  System.out.println(200-110);//90


第二种方式是使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用 BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构 造,因为在将float或double转换成String时精度已丢失)。 
例如:

new BigDecimal(0.1), 
它将返回一个BigDecimal,也即0.1000000000000000055511151231257827021181583404541015625, 
正确使用BigDecimal,程序就可以打印出我们所期望的结果0.9: 

  System.out.println(new BigDecimal("2.0").subtract(new BigDecimal("1.10")));// 0.9

另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。

 

3. int整数相乘溢出

  我们计算一天中的微秒数: 
  

  long microsPerDay = 24 * 60 * 60 * 1000 * 1000;// 正确结果应为:86400000000
  System.out.println(microsPerDay);// 实际上为:500654080


  问题在于计算过程中溢出了。这个计算式完全是以int运算来执行的,并且只有在运算完成之后,其结果才被提升为long,而此时已经太迟:计算已经溢出。 
  解决方法使计算表达式的第一个因子明确为long型,这样可以强制表达式中所有的后续计算都用long运算来完成,这样结果就不会溢出: 

  long microsPerDay = 24L * 60 * 60 * 1000 * 1000;


4. 负的十六进制与八进制字面常量 

“数字字面常量”的类型都是int型,而不管他们是几进制,所以“2147483648”、“0x180000000(十六进制,共33位,所以超过了整数的 取值范围)”字面常量是错误的,编译时会报超过int的取值范围了,所以要确定以long来表示 “2147483648L”“0x180000000L”。 

十进制字面常量只有一个特性,即所有的十进制字面常量都是正数,如果想写一个负的十进制,则需要在正的十进制字面常量前加上“-”即可。 

十六进制或八进制字面常量可就不一定是正数或负数,是正还是负,则要根据当前情况看:如果十六进制和八进制字面常量的最高位被设置成了1,那么它们就是负数: 

System.out.println(0x80);//128 
//0x81看作是int型,最高位(第32位)为0,所以是正数
System.out.println(0x81);//129 
System.out.println(0x8001);//32769
System.out.println(0x70000001);//1879048193 
//字面量0x80000001为int型,最高位(第32位)为1,所以是负数
System.out.println(0x80000001);//-2147483647
//字面量0x80000001L强制转为long型,最高位(第64位)为0,所以是正数
System.out.println(0x80000001L);//2147483649
//最小int型
System.out.println(0x80000000);//-2147483648
//只要超过32位,就需要在字面常量后加L强转long,否则编译时出错
System.out.println(0x8000000000000000L);//-9223372036854775808
从上面可以看出,十六进制的字面常量表示的是int型,如果超过32位,则需要在后面加“L”,否则编译过不过。如果为32,则为负int正数,超过32位,则为long型,但需明确指定为long。 
System.out.println(Long.toHexString(0x100000000L + 0xcafebabe));// cafebabe

结果为什么不是0x1cafebabe?该程序执行的加法是一个混合类型的计算:左操作数是long型,而右操作数是int类型。为了执行该计算,Java 将int类型的数值用拓宽原生类型转换提升为long类型,然后对两个long类型数值相加。因为int是有符号的整数类型,所以这个转换执行的是符号扩展。 

这个加法的右操作数0xcafebabe为32位,将被提升为long类型的数值0xffffffffcafebabeL,之后这个数值加上了左操 作0x100000000L。当视为int类型时,经过符号扩展之后的右操作数的高32位是-1,而左操作数的第32位是1,两个数值相加得到了0:

0x 0xffffffffcafebabeL 
+0x 0000000100000000L 
----------------------------- 
0x 00000000cafebabeL


如果要得到正确的结果0x1cafebabe,则需在第二个操作数组后加上“L”明确看作是正的long型即可,此时相加时拓展符号位就为0: 

  System.out.println(Long.toHexString(0x100000000L + 0xcafebabeL));// 1cafebabe

5. 窄数字类型提升至宽类型时使用符号位扩展还是零扩展 

  System.out.println((int)(char)(byte)-1);// 65535

结果为什么是65535而不是-1?

窄的整型转换成较宽的整型时符号扩展规则:如果最初的数值类型是有符号的,那么就执行符号扩展(即如果符号位为1,则扩展为1,如果为零,则扩展为0);如果它是char,那么不管它将要被提升成什么类型,都执行零扩展。 

了解上面的规则后,我们再来看看迷题:因为byte是有符号的类型,所以在将byte数值-1(二进制为:11111111)提升到char时,会发生符号位扩展,又符号位为1,所以就补8个1,最后为16个1;然后从char到int的提升时,由于是char型提升到其他类型,所以采用零扩展而不是符号扩展,结果int数值就成了65535。


如果将一个char数值c转型为一个宽度更宽的类型时,只是以零来扩展,但如果清晰表达以零扩展的意图,则可以考虑使用一个位掩码: 

    int i = c & 0xffff;//实质上等同于:int i = c ;

 

如果将一个char数值c转型为一个宽度更宽的整型,并且希望有符号扩展,那么就先将char转型为一个short,它与 

char上个具有同样的宽度,但是它是有符号的: 
  

  int i = (short)c;

 

如果将一个byte数值b转型为一个char,并且不希望有符号扩展,那么必须使用一个位掩码来限制它: 

    char c = (char)(b & 0xff);// char c = (char) b;为有符号扩展[size=medium] 

6. ((byte)0x90 == 0x90)? [/size]

答案是不等的,尽管外表看起来是成立的,但是它却等于false。为了比较byte数值(byte)0x90和int数值0x90,Java 

通过拓宽原生类型将byte提升为int,然后比较这两个int数值。因为byte是一个有符号类型,所以这个转换执行的是 

符号扩展,将负的byte数值提升为了在数字上相等的int值(10010000111111111111111111111111 10010000)。在本例中,该转换将(byte)0x90提升为int数值-112,它不等于int数值的0x90,即+144。 

解决办法:使用一个屏蔽码来消除符号扩展的影响,从而将byte转型为int。 

((byte)0x90 & 0xff)== 0x90


7. 三元表达式(?:) 

  char x = 'X';
  int i = 0;
  System.out.println(true ? x : 0);// X
  System.out.println(false ? i : x);// 88


条件表达式结果类型的规则: 
(1) 如果第二个和第三个操作数具有相同的类型,那么它就是条件表达式的类型。 
(2) 如果一个操作的类型是T,T表示byte、short或char,而另一个操作数是一个int类型的“字面常量”,并且 

它的值可以用类型T表示,那条件表达式的类型就是T。 
(3) 否则,将对操作数类型进行提升,而条件表达式的类型就是第二个和第三个操作被提升之后的类型。 


现来使用以上规则解上面的迷题,第一个表达式符合第二条规则:一个操作数的类型是char,另一个的类型是字面常 

量为0的int型,但0可以表示成char,所以最终返回类型以char类型为准;第二个表达式符合第三条规则:因为i为int 

型变量,而x又为char型变量,所以会先将x提升至int型,所以最后的结果类型为int型,但如果将i定义成final时, 

则返回结果类型为char,则此时符合第二条规则,因为final类型的变量在编译时就使用“字面常量0”来替换三元表 

达式了: 

  final int i = 0;
  System.out.println(false ? i : x);// X

 

在JDK1.4版本或之前,条件操作符 ?: 中,当第二个和延续三个操作数是引用类型时,条件操作符要求它们其中一个 

必须是另一个的子类型,那怕它们有同一个父类也不行: 

public class T {
    public static void main(String[] args) {
        System.out.println(f());
    }

    public static T f() {
        // !!1.4不能编译,但1.5可以
        // !!return true?new T1():new T2();
        return true ? (T) new T1() : new T2();// T1
    }
}

class T1 extends T {
    public String toString() {
        return "T1";
    }
}

class T2 extends T {
    public String toString() {
        return "T2";
    }
}

 

在5.0或以上版本中,条件操作符在延续二个和第三个操作数是引用类型时总是合法的。其结果类型是这两种类型的最 小公共超类。公共超类总是存在的,因为Object是每一个对象类型的超类型,上面的最小公共超类是T,所以能编译。

 

在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。

 
1. 尽量使用final修饰符。

带有final修饰符的类是不可派生的。在JAVA核心API中,有许多应用final的例子,例如 java.lang.String。为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有 方法都是final的。java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高 50%。

2.尽量重用对象。

特别是String对象的使用中,出现字符串连接情况时应使用StringBuffer代替,由于系统不仅要花时间生成对象,以后可能还需要花时间对这些对象进行垃圾回收和处理。因此生成过多的对象将会给程序的性能带来很大的影响。

3. 尽量使用局部变量。

调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量,实例变量等,都在堆(Heap)中创建,速度较慢。

4.不要重复初始化变量。

默 认情况下,调用类的构造函数时,java会把变量初始化成确定的值,所有的对象被设置成null,整数变量设置成0,float和double变量设置成 0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键字创建一个对象时,构造函数链中的所有构造函数都会被 自动调用。 这里有个注意,给成员变量设置初始值但需要调用其他方法的时候,最好放在一个方法比如initXXX()中,因为直接调用某方法赋值可能会因为类尚未初始化而抛空指针异常,public int state = this.getState();

 

5.在java+Oracle的应用系统开发中,java中内嵌的SQL语言应尽量使用大写形式,以减少Oracle解析器的解析负担。

 

6.java编程过程中,进行数据库连接,I/O流操作,在使用完毕后,及时关闭以释放资源。因为对这些大对象的操作会造成系统大的开销。

 

7.过分的创建对象会消耗系统的大量内存,严重时,会导致内存泄漏,因此,保证过期的对象的及时回收具有重要意义。 JVM的GC并非十分智能,因此建议在对象使用完毕后,手动设置成null。

 

8.在使用同步机制时,应尽量使用方法同步代替代码块同步。

 

9.尽量减少对变量的重复计算。

比如 :
    for(int i=0;i<list.size();i++)   
应修改为 :
  for(int i=0,len=list.size();i<len;i++)  



10. 采用在需要的时候才开始创建的策略。

  例如: 

    String str="abc";   
    if(i==1){ list.add(str);}  

应修改为: 

  if(i==1){String str="abc"; list.add(str);}  


11.慎用异常,异常对性能不利。

抛 出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地方 法,fillInStackTrace()方法检查栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用栈,因为在处理过程中创建了一个新的对 象。 
异常只能用于错误处理,不应该用来控制程序流程。


12.不要在循环中使用Try/Catch语句,应把Try/Catch放在循环最外层。

Error是获取系统错误的类,或者说是虚拟机错误的类。不是所有的错误Exception都能获取到的,虚拟机报错 Exception就获取不到,必须用Error获取。


13.通过StringBuffer的构造函数来设定他的初始化容量,可以明显提升性能。

StringBuffer 的默认容量为16,当StringBuffer的容量达到最大容量时,她会将自身容量增加到当前的2倍+2,也就是2*n+2。无论何时,只要 StringBuffer到达她的最大容量,她就不得不创建一个新的对象数组,然后复制旧的对象数组,这会浪费很多时间。所以给StringBuffer 设置一个合理的初始化容量值,是很有必要的!


14.合理使用java.util.Vector。

Vector 与StringBuffer类似,每次扩展容量时,所有现有元素都要赋值到新的存储空间中。Vector的默认存储能力为10个元素,扩容加倍。 
vector.add(index,obj) 这个方法可以将元素obj插入到index位置,但index以及之后的元素依次都要向下移动一个位置(将其索引加 1)。 除非必要,否则对性能不利。 
同 样规则适用于remove(int index)方法,移除此向量中指定位置的元素。将所有后续元素左移(将其索引减 1)。返回此向量中移除的元素。所以删除vector最后一个元素要比删除第1个元素开销低很多。删除所有元素最好用 removeAllElements()方法。 
如果要删除vector里的一个元素可以使用 vector.remove(obj);而不必自己检索元素位置,再删除,如int index = indexOf(obj);vector.remove(index); 

15.当复制大量数据时,使用 System.arraycopy(); 

16.代码重构,增加代码的可读性。 

17.不用new关键字创建对象的实例。

用 new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用她的clone() 方法。clone()方法不会调用任何类构造函数。 
下面是Factory模式的一个典型实现。 

    public static Credit getNewCredit()   
    {   
        return new Credit();   
    }  


改进后的代码使用clone() 方法, 

 

    private static Credit BaseCredit = new Credit();   
    public static Credit getNewCredit()   
    {   
        return (Credit)BaseCredit.clone();   
    }  

 

 


18. 乘除法如果可以使用位移,应尽量使用位移,但最好加上注释,因为位移操作不直观,难于理解。 

19.不要将数组声明为:public static final。 

20.HaspMap的遍历。 

 

Map<String, String[]> paraMap = new HashMap<String, String[]>();   
for( Entry<String, String[]> entry : paraMap.entrySet() )   
{   
    String appFieldDefId = entry.getKey();   
    String[] values = entry.getValue();   
} 

 


利用散列值取出相应的Entry做比较得到结果,取得entry的值之后直接取key和 value。


21.array(数组)和ArrayList的使用。

array 数组效率最高,但容量固定,无法动态改变,ArrayList容量可以动态增长,但牺牲了效率。 

22.单线程应尽量使用 HashMap, ArrayList,除非必要,否则不推荐使用HashTable,Vector,她们使用了同步机制,而降低了性能。 

23.StringBuffer,StringBuilder 的区别

在于:java.lang.StringBuffer 线程安全的可变字符序列。一个类似于String的字符串缓冲区,但不能修改。StringBuilder与该类相比,通常应该优先使用 StringBuilder类,因为她支持所有相同的操作,但由于她不执行同步,所以速度更快。为了获得更好的性能,在构造StringBuffer或 StringBuilder时应尽量指定她的容量。当然如果不超过16个字符时就不用了。 
相同情况下,使用StringBuilder比使用 StringBuffer仅能获得10%~15%的性能提升,但却要冒多线程不安全的风险。综合考虑还是建议使用StringBuffer。


24. 尽量使用基本数据类型代替对象。 

25.用简单的数值计算代替复杂的函数计算,比如查表方式解决三角函数问题。 

26.使用具体类比使用接口效率高,但结构弹性降低了,但现代IDE都可以解决这个问题。 

27.考虑使用静态方法,如果你没有必要去访问对象的外部,那么就使你的方法成为静态方法。她会被更快地调用,因为她不需要一个虚拟函数导向表。这同事也是一个很好的实践,因为她告诉你如何区分方法的性质,调用这个方法不会改变对象的状态。 

28.应尽可能避免使用内在的GET,SET方法。

android编程中,虚方法的调用会产生很多代价,比实例属性查询的代价还要多。我们应该在外包调用的时候才使用get,set方法,但在内部调用的时候,应该直接调用。


29. 避免枚举,浮点数的使用。 

30.二维数组比一维数组占用更多的内存空间,大概是10倍计算。 

31.SQLite数据库读取整张表的全部数据很快,但有条件的查询就要耗时30-50MS,大家做这方面的时候要注意,尽量少用,尤其是嵌套查找!

posted @ 2015-01-10 18:31  BalmyLee  阅读(196)  评论(0编辑  收藏  举报