矩阵乘法与矩阵快速幂
1 矩阵乘法
1.定义
若矩阵A的大小为
注意:只有矩阵A的列数等于矩阵B的行数时,两个矩阵才能相乘。
2.代码实现
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
const int N = 105;
int n, m, p, a[N][N], b[N][N], c[N][N];
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m >> p;
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
for (rg int i = 1; i <= m; i++) {
for (rg int j = 1; j <= p; j++) {
cin >> b[i][j];
}
}
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= p; j++) {
for (rg int k = 1; k <= m; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= p; j++) {
cout << c[i][j] << " ";
}
cout << "\n";
}
return qwq;
}
2 矩阵快速幂
模版
#define mr matrix
struct mr {
int m[2][2];
} ans, base;
mr multi(mr a, mr b, int n) {
mr tmp;
for (rg int i = 0; i < n; i++) {
for (rg int j = 0; j < n; j++) {
tmp.m[i][j] = 0;
for (rg int k = 0; k < n; k++) {
tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
}
}
return tmp;
}
inline void init() { //初始化矩阵
base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
base.m[1][1] = 0;
ans.m[0][0] = ans.m[1][1] = 1;
ans.m[0][1] = ans.m[1][0] = 0;
}
inline int qmod(int k) { //求矩阵 base的 k次幂
init();
while (k) {
if (k & 1) ans = multi(ans, base, 2);
base = multi(base, base, 2);
k >>= 1;
}
return ans.m[0][1];
}
例题1:Fibonacci第n项
题目描述:计算斐波那契数列第n项的后m位。
解析:
斐波那契数列的递推方程试可以写成矩阵的形式:
那么:
于是,我们只需要类比普通的快速幂计算矩阵
的快速幂即可。
代码:
#include<bits/stdc++.h>
#define rg register
#define qwq 0
#define mr matrix
#define int long long
using namespace std;
int n, m;
struct mr {
int m[2][2]; //由矩阵的大小决定
} ans, base;
mr multi(mr a, mr b, int n) {
mr tmp;
for (rg int i = 0; i < n; i++) {
for (rg int j = 0; j < n; j++) {
tmp.m[i][j] = 0;
for (rg int k = 0; k < n; k++) {
tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % m;
}
}
}
return tmp;
}
inline void init() { //初始化矩阵
base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
base.m[1][1] = 0;
ans.m[0][0] = ans.m[1][1] = 1;
ans.m[0][1] = ans.m[1][0] = 0;
}
inline int qmod(int k) { //求矩阵 base的 k次幂
init();
while (k) {
if (k & 1) ans = multi(ans, base, 2);
base = multi(base, base, 2);
k >>= 1;
}
return ans.m[0][1];
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> m;
cout << qmod(n) % m << "\n";
return qwq;
}
例题2:Fibonacci前n项和
题目描述:
求
解析:
考虑递推关系式:
所以:
例题3:佳佳的Fibonacci
题目描述:
解析:
递推关系式的矩阵中不能出现变量n,所以要先对递推关系式变形成我们可以处理的情况。
而
令
我们不需要递推
因为
代码:
#include<bits/stdc++.h>
#define rg register
#define qwq 0
#define mr matrix
using namespace std;
typedef long long ll;
const int N = 100010;
ll mod, n;
struct mr {
ll m[5][5];
mr() { memset(m, 0, sizeof(m)); }
} a, b;
mr multi(mr x, mr y) {
mr ans;
for (rg int i = 0; i < 4; i++) {
for (rg int j = 0; j < 4; j++) {
for (rg int k = 0; k < 4; k++) {
ans.m[i][j] = (ans.m[i][j] + x.m[i][k] * y.m[k][j]) % mod;
}
}
}
return ans;
}
inline void init() {
a.m[0][0] = a.m[0][1] = a.m[1][1] = a.m[1][2] = a.m[2][2] = a.m[2][3] = a.m[3][2] = 1;
b.m[1][0] = b.m[2][0] = b.m[3][0] = 1;
}
mr qmod(ll p) {
mr ans, base = a;
ans.m[0][0] = ans.m[1][1] = ans.m[2][2] = ans.m[3][3] = 1;
while (p) {
if (p & 1) ans = multi(ans, base);
base = multi(base, base);
p >>= 1;
}
return ans;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> mod;
init();
a = qmod(n - 1);
mr ans = multi(a, b);
cout << (n * ans.m[1][0] - ans.m[0][0] + mod) % mod << "\n";
return qwq;
}
递推中存在常数的处理
1.
2.
例题4:矩阵幂求和
题目描述:
给定一个矩阵,求
解析:
法一:递归
对式子进行变形,比如:
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
struct matrix {
int n, a[35][35];
} bs, dw; //dw是单位阵
int n, k, p;
matrix operator *(matrix x, matrix y) {
matrix ans;
memset(ans.a, 0, sizeof(ans.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
for (rg int k = 1; k <= n; k++) {
ans.a[i][j] = (ans.a[i][j] + x.a[i][k] * y.a[k][j]) % p;
}
}
}
return ans;
}
inline matrix ksm(int x) { //求 A^x
matrix ans = dw; //初始dw是斜对角线为 1的矩阵
matrix bbs = bs;
while (x) {
if (x & 1) ans = ans * bbs;
bbs = bbs * bbs;
x >>= 1;
}
return ans;
}
inline matrix add(matrix x, matrix y) {
matrix ans;
memset(ans.a, 0, sizeof(ans.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
ans.a[i][j] = (x.a[i][j] + y.a[i][j]) % p;
}
}
return ans;
}
inline matrix dfs(int siz) { //求 A+A^2+A^3+...+A^siz
if (siz == 1) return bs;
if (siz & 1) return add(add(ksm(siz / 2), dw) * dfs(siz / 2), ksm(siz));
else return add(ksm(siz / 2), dw) * dfs(siz / 2);
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k >> p;
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
if (i == j) dw.a[i][j] = 1; //任何矩阵乘对角线为 1的矩阵都是本身
}
}
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
rg int x;
cin >> x;
bs.a[i][j] = x;
}
}
matrix ans;
ans = dfs(k);
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
cout << ans.a[i][j] << " ";
}
cout << "\n";
}
return qwq;
}
法二:分块矩阵
我们尝试使用
和
建立关系:
我们会发现,这里面是矩阵包含着矩阵,所以这个矩阵的长度为A的长度乘2,同时下面的1也为单位矩阵,0也是一个矩阵,长度都为A的长度。我们求新矩阵的n-1次方,就可以得到
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
struct matrix {
int n, a[65][65];
} bs;
int n, k, p;
matrix operator *(matrix x, matrix y) {
matrix ans;
memset(ans.a, 0, sizeof(ans.a));
for (rg int i = 1; i <= (n << 1); i++) {
for (rg int j = 1; j <= (n << 1); j++) {
for (rg int k = 1; k <= (n << 1); k++) {
ans.a[i][j] = (ans.a[i][j] + x.a[i][k] * y.a[k][j] % p) % p;
}
}
}
return ans;
}
inline matrix ksm(int x) {
matrix ans;
memset(ans.a, 0, sizeof(ans.a));
for (rg int i = 1; i <= (n << 1); i++) {
for (rg int j = 1; j <= (n << 1); j++) {
if (i == j) ans.a[i][j] = 1;
}
}
matrix bbs;
memset(bbs.a, 0, sizeof(bbs.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= (n << 1); j++) {
bbs.a[i][j] = bs.a[i][j];
}
}
for (rg int i = n + 1; i <= (n << 1); i++) {
for (rg int j = 1; j <= n; j++) {
bbs.a[i][j] = 0;
}
}
for (rg int i = n + 1; i <= (n << 1); i++) {
for (rg int j = n + 1; j <= (n << 1); j++) {
if (i == j) bbs.a[i][j] = 1;
}
}
while (x) {
if (x & 1) ans = ans * bbs;
bbs = bbs * bbs;
x >>= 1;
}
return ans;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k >> p;
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
rg int x;
cin >> x;
bs.a[i][j] = x % p;
}
}
for (rg int i = 1; i <= n; i++) {
for (rg int j = n + 1; j <= (n << 1); j++) {
bs.a[i][j] = bs.a[i][j - n];
}
}
matrix ans = ksm(k - 1);
matrix ret;
memset(ret.a, 0, sizeof(ret.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= (n << 1); j++) {
for (rg int k = 1; k <= (n << 1); k++) {
ret.a[i][j] = (ret.a[i][j] + bs.a[i][k] * ans.a[k][j] % p) % p;
}
}
}
for (rg int i = 1; i <= n; i++) {
for (rg int j = n + 1; j <= (n << 1); j++) {
cout << ret.a[i][j] << " ";
}
cout << "\n";
}
return qwq;
}
例题5:图上路径方案
题目描述:
给定一个有向图的邻接矩阵S,问从点a恰好走K步(允许重复经过边)到达b点的方案数模10007的值。
解析:
如下图:
在图的邻接矩阵中,两点之间有连边用1表示,没有用0表示。
换个角度来想,在邻接矩阵A中,
在
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
const int mod = 10007;
int n, x, y, k;
struct matrix {
int a[35][35];
} base;
matrix operator *(matrix x, matrix y) {
matrix p;
memset(p.a, 0, sizeof(p.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
for (rg int k = 1; k <= n; k++) {
p.a[i][j] += (x.a[i][k] * y.a[k][j]) % mod;
p.a[i][j] %= mod;
}
}
}
return p;
}
matrix ksm(int x) {
matrix ans;
memset(ans.a, 0, sizeof(ans.a));
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
if (i == j) ans.a[i][j] = 1;
}
}
while (x) {
if (x & 1) ans = ans * base;
base = base * base;
x >>= 1;
}
return ans;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> x >> y >> k;
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
rg int x;
cin >> x;
base.a[i][j] = x % mod;
}
}
matrix ans = ksm(k);
cout << ans.a[x][y] << "\n";
return qwq;
}
例题6:Coww Relays G
题目描述:
给定一张T条边的无向连通图,求S到E经过M条边的最短路。
解析:
我们可以通过动态规划来解决此题。令
其中N为总的点数,如果k和i之间有边相连,则
上述dp方程时间复杂度为
回顾矩阵乘法在图论里的应用式子:
由于矩阵乘法满足分配律和结合律(不满足交换律),所以我们可以通过矩阵快速幂的方法来加速。于是:
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
struct matrix {
int a[205][205];
} bs;
int num[1005], tot;
int n, t, s, e, mx;
matrix operator *(matrix x, matrix y) {
matrix c;
memset(c.a, 0x3f, sizeof(c.a));
for (rg int i = 1; i <= tot; i++) {
for (rg int j = 1; j <= tot; j++) {
for (rg int k = 1; k <= tot; k++) {
c.a[i][j] = min(c.a[i][j], x.a[i][k] + y.a[k][j]);
}
}
}
return c;
}
matrix ksm(int x) {
matrix ans = bs;
while (x) {
if (x & 1) ans = ans * bs;
bs = bs * bs;
x >>= 1;
}
return ans;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> t >> s >> e;
memset(bs.a, 0x3f, sizeof(bs.a));
for (rg int i = 1; i <= t; i++) {
rg int a, b, c;
cin >> c >> a >> b;
if (!num[a]) num[a] = ++tot;
if (!num[b]) num[b] = ++tot;
bs.a[num[a]][num[b]] = c;
bs.a[num[b]][num[a]] = c;
}
matrix ans = ksm(n - 1);
cout << ans.a[num[s]][num[e]] << "\n";
return qwq;
}
例题7:Blocks
题目描述:
有n个blocks,让你用红,蓝,绿,黄四种颜色染上色,求红色和绿色的block都是偶数个的方案有多少个。
解析:
首先,令
得出状态转移方程:
由于n<=1e9所以
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
const int mod = 10007;
struct matrix {
int a[4][4];
matrix() { memset(a, 0, sizeof(a)); }
} bs;
matrix operator *(matrix x, matrix y) {
matrix ans;
for (rg int i = 0; i < 3; i++) {
for (rg int j = 0; j < 3; j++) {
for (rg int k = 0; k < 3; k++) {
ans.a[i][j] = (ans.a[i][j] + x.a[i][k] * y.a[k][j]) % mod;
}
}
}
return ans;
}
matrix operator ^(matrix x, int num) {
matrix ans;
for (rg int i = 0; i < 3; i++) ans.a[i][i] = 1;
while (num) {
if (num & 1) ans = ans * x;
x = x * x;
num >>= 1;
}
return ans;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int n, t;
cin >> t;
while (t--) {
matrix m;
cin >> n;
m.a[0][0] = 2, m.a[0][1] = 1, m.a[0][2] = 0;
m.a[1][0] = 2, m.a[1][1] = 2, m.a[1][2] = 2;
m.a[2][0] = 0, m.a[2][1] = 1, m.a[2][2] = 2;
m = m ^ n;
cout << m.a[0][0] << "\n";
}
return qwq;
}
例题8:迷路
题目描述:
该有向图有n个结点,从1到n编号。Windy从1出发,必须恰好在t时刻到达n。求有多少种不同的路径,答案对2009取模。
解析:
首先,如果题目中的每一条边只用0和1表示并且用邻接矩阵A来存这张图,那么在矩阵
但这道题这么做显然不行,因为我们所有的推论都建立在边权为1的情况上。
虽然我们不能直接使用我们的结论,但最大边权是9,n也不超过10,不算大。所以我们可以采用拆点:把一个点拆成多个点。
先来拆一个边权不超过2的图:
可得矩阵:
将其拆点:
将1.1看成结点1;1.2看成结点2;2.1看成结点3;2.2看成结点4,可得新矩阵:
将其平方:
我们再对非零点进行分类,原先就有的1看成蓝色,后面通过自连得到的1看成红色:
下面的代码可以进行拆点操作:
inline int Cheak(int i, int j) {
return (i - 1) * 10 + j;
}
inline void ChaiDian() {
for (rg int i = 1; i <= nn; i++) {
for (rg int j = 1; j < maxn; j++) { //maxn表示最大边权
f[Cheak(i, j)][Cheak(i, j + 1)] = 1; //对红点进行标记
}
for (rg int j = 1; j <= nn; j++) {
if (a[i][j]) { //对本来就存在的点进行标记
f[Cheak(i, a[i][j])][Cheak(j, 1)] = 1;
}
}
}
}
最终代码:
#include<bits/stdc++.h>
#define rg register
#define qwq 0
using namespace std;
const int mod = 2009;
int n, nn, t;
struct matrix {
int ma[205][205];
void clear() { memset(ma, 0, sizeof(ma)); }
} A;
matrix operator *(matrix x, matrix y) {
matrix ans;
ans.clear();
for (rg int i = 1; i <= n; i++) {
for (rg int j = 1; j <= n; j++) {
for (rg int k = 1; k <= n; k++) {
ans.ma[i][j] = (ans.ma[i][j] + x.ma[i][k] * y.ma[k][j]) % mod;
}
}
}
return ans;
}
matrix ksm(matrix x, int b) {
matrix ans;
ans.clear();
for (rg int i = 1; i <= n; i++) {
ans.ma[i][i] = 1;
}
while (b) {
if (b & 1) ans = ans * x;
x = x * x;
b >>= 1;
}
return ans;
}
inline int Cheak(int i, int j) {
return (i - 1) * 10 + j;
}
inline void ChaiDian() {
for (rg int i = 1; i <= nn; i++) {
for (rg int j = 1; j < 10; j++) { //maxn表示最大边权
A.ma[Cheak(i, j)][Cheak(i, j + 1)] = 1; //对红点进行标记
}
for (rg int j = 1; j <= nn; j++) {
rg char xx;
rg int x;
cin >> xx;
x = xx - '0';
if (x) { //对本来就存在的点进行标记
A.ma[Cheak(i, x)][Cheak(j, 1)] = 1;
}
}
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> t;
nn = n;
n *= 10;
ChaiDian();
A = ksm(A, t);
cout << A.ma[1][n - 9] << "\n";
return qwq;
}
完结撒花~
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】