图像增强-选择式掩膜平滑

邻域平均法和加权平均法在消除噪声的同时,都不可避免地带来平均化的缺憾,致使尖锐变化的边缘或线条变得模糊。考虑图像中目标物体和背景一般都具有不同的统计特性,即不同的均值和方差,为保留一定的边缘信息,可采用选择式掩膜平滑滤波,这样可以得到较好的图像细节。这种方法以尽量不模糊边缘轮廓为目的。

  1.基本原理

  选择式掩膜平滑方法取5×5的模板窗口,以中心像素为基准点,制作4个五边形、4个六边形、一个边长为3的正方形共9个形状的屏幕窗口,分别计算每个窗口内的平均值及方差。由于含有尖锐边缘的区域,方差必定比平缓区域大,因此采用方差最小的屏蔽窗口进行平均化。这种方法在完成滤波操作的同时,又不破坏区域边界的细节。这种采用9种形状的屏蔽窗口,分别计算各窗口内的灰度值方差,并采用方差最小的屏蔽窗口进行平均化的方法,也称为自适应平滑方法。下图为9种屏蔽窗口的模板

捕获

均值的计算公式为:

捕获

计算方差的公式为:

image

式中,k=1,2,3,4·····,N        N为各模板对应的像素个数。

算法实现:

 

View Code
  1 void CImgEnhance::ChooseMask()
  2 {
  3     if(m_nBitCount!=8)
  4     {
  5         AfxMessageBox("只能处理8位灰度图像!");
  6         return ;
  7     }
  8     int n,pixel[9],nmin;
  9     float mean[9],var[9],bmin;
 10     
 11     if(m_pImgDataOut!=NULL)
 12     {
 13         delete []m_pImgDataOut;
 14         m_pImgDataOut=NULL;
 15     }
 16        //创建要复制的图像区域
 17     m_nBitCountOut=m_nBitCount;
 18     int lineByteOut=(m_imgWidth*m_nBitCountOut/8+3)/4*4;
 19     if (!m_pImgDataOut)
 20     {
 21         m_pImgDataOut=new unsigned char[lineByteOut*m_imgHeight];
 22     }
 23     
 24     memset(m_pImgDataOut,255,lineByteOut * m_imgHeight);
 25     for(int j=2;j<=m_imgHeight-3;j++)
 26         for(int i=2;i<=m_imgWidth-3;i++)
 27         {
 28             //求9种近邻区域的均值及其方差
 29             //第1近邻区域
 30             pixel[0]=m_pImgData[(j-1)*lineByteOut+(i-1)];
 31             pixel[1]=m_pImgData[(j-1)*lineByteOut+i];
 32             pixel[2]=m_pImgData[(j-1)*lineByteOut+(i+1)];
 33             pixel[3]=m_pImgData[j*lineByteOut+(i-1)];
 34             pixel[4]=m_pImgData[j*lineByteOut+i];
 35             pixel[5]=m_pImgData[j*lineByteOut+(i+1)];
 36             pixel[6]=m_pImgData[(j+1)*lineByteOut+(i-1)];
 37             pixel[7]=m_pImgData[(j+1)*lineByteOut+i];
 38             pixel[8]=m_pImgData[(j+1)*lineByteOut+(i+1)];
 39             mean[0]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6]+pixel[7]+pixel[8])/9;
 40             var[0]=0;
 41             for(n=0;n<=8;n++)
 42                 var[0]+=pixel[n]*pixel[n]-mean[0]*mean[0];
 43             //第2近邻区域
 44             pixel[0]=m_pImgData[(j-2)*lineByteOut+(i-1)];
 45             pixel[1]=m_pImgData[(j-2)*lineByteOut+i];
 46             pixel[2]=m_pImgData[(j-2)*lineByteOut+(i+1)];
 47             pixel[3]=m_pImgData[(j-1)*lineByteOut+(i-1)];
 48             pixel[4]=m_pImgData[(j-1)*lineByteOut+i];
 49             pixel[5]=m_pImgData[(j-1)*lineByteOut+(i+1)];
 50             pixel[6]=m_pImgData[j*lineByteOut+i];
 51             mean[1]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
 52             var[1]=0;
 53             for(n=0;n<=6;n++)
 54                 var[1]+=pixel[n]*pixel[n]-mean[1]*mean[1];
 55             //第3近邻区域
 56             pixel[0]=m_pImgData[(j-1)*lineByteOut+(i-2)];
 57             pixel[1]=m_pImgData[(j-1)*lineByteOut+(i-1)];
 58             pixel[2]=m_pImgData[j*lineByteOut+(i-2)];
 59             pixel[3]=m_pImgData[j*lineByteOut+(i-1)];
 60             pixel[4]=m_pImgData[j*lineByteOut+i];
 61             pixel[5]=m_pImgData[(j+1)*lineByteOut+(i-2)];
 62             pixel[6]=m_pImgData[(j+1)*lineByteOut+(i-1)];
 63             mean[2]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
 64             var[2]=0;
 65             for(n=0;n<=6;n++)
 66                 var[2]+=pixel[n]*pixel[n]-mean[2]*mean[2];
 67             //第4近邻区域
 68             pixel[0]=m_pImgData[j*lineByteOut+i];
 69             pixel[1]=m_pImgData[(j+1)*lineByteOut+(i-1)];
 70             pixel[2]=m_pImgData[(j+1)*lineByteOut+i];
 71             pixel[3]=m_pImgData[(j+1)*lineByteOut+(i+1)];
 72             pixel[4]=m_pImgData[(j+2)*lineByteOut+(i-1)];
 73             pixel[5]=m_pImgData[(j+2)*lineByteOut+i];
 74             pixel[6]=m_pImgData[(j+2)*lineByteOut+(i+1)];
 75             mean[3]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
 76             var[3]=0;
 77             for(n=0;n<=6;n++)
 78                 var[3]+=pixel[n]*pixel[n]-mean[3]*mean[3];
 79             //第5近邻区域
 80             pixel[0]=m_pImgData[(j-1)*lineByteOut+(i+1)];
 81             pixel[1]=m_pImgData[(j-1)*lineByteOut+(i+2)];
 82             pixel[2]=m_pImgData[j*lineByteOut+i];
 83             pixel[3]=m_pImgData[j*lineByteOut+(i+1)];
 84             pixel[4]=m_pImgData[j*lineByteOut+(i+2)];
 85             pixel[5]=m_pImgData[(j+1)*lineByteOut+(i+1)];
 86             pixel[6]=m_pImgData[(j+1)*lineByteOut+(i+2)]; 
 87             mean[4]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
 88             var[4]=0;
 89             for(n=0;n<=6;n++)
 90                 var[4]+=pixel[n]*pixel[n]-mean[4]*mean[4];    
 91             //第6近邻区域
 92             pixel[0]=m_pImgData[(j-2)*lineByteOut+(i+1)];
 93             pixel[1]=m_pImgData[(j-2)*lineByteOut+(i+2)];
 94             pixel[2]=m_pImgData[(j-1)*lineByteOut+i];
 95             pixel[3]=m_pImgData[(j-1)*lineByteOut+(i+1)];
 96             pixel[4]=m_pImgData[(j-1)*lineByteOut+(i+2)];
 97             pixel[5]=m_pImgData[j*lineByteOut+i];
 98             pixel[6]=m_pImgData[j*lineByteOut+(i+1)]; 
 99             mean[5]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
100             var[5]=0;
101             for(n=0;n<=6;n++)
102                 var[5]+=pixel[n]*pixel[n]-mean[5]*mean[5];
103             //第7近邻区域
104             pixel[0]=m_pImgData[(j-2)*lineByteOut+(i-2)];
105             pixel[1]=m_pImgData[(j-2)*lineByteOut+(i-1)];
106             pixel[2]=m_pImgData[(j-1)*lineByteOut+(i-2)];
107             pixel[3]=m_pImgData[(j-1)*lineByteOut+(i-1)];
108             pixel[4]=m_pImgData[(j-1)*lineByteOut+i];
109             pixel[5]=m_pImgData[j*lineByteOut+(i-1)];
110             pixel[6]=m_pImgData[j*lineByteOut+i];
111             mean[6]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
112             var[6]=0;
113             for(n=0;n<=6;n++)
114                 var[6]+=pixel[n]*pixel[n]-mean[6]*mean[6];
115             //第8近邻区域
116             pixel[0]=m_pImgData[j*lineByteOut+(i-1)];
117             pixel[1]=m_pImgData[j*lineByteOut+i];
118             pixel[2]=m_pImgData[(j+1)*lineByteOut+(i-2)];
119             pixel[3]=m_pImgData[(j+1)*lineByteOut+(i-1)];
120             pixel[4]=m_pImgData[(j+1)*lineByteOut+i];
121             pixel[5]=m_pImgData[(j+2)*lineByteOut+(i-2)];
122             pixel[6]=m_pImgData[(j+2)*lineByteOut+(i-1)];
123             mean[7]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
124             var[7]=0;
125             for(n=0;n<=6;n++)
126                 var[7]+=pixel[n]*pixel[n]-mean[7]*mean[7];
127             //第9近邻区域
128             pixel[0]=m_pImgData[j*lineByteOut+i];
129             pixel[1]=m_pImgData[j*lineByteOut+(i+1)];
130             pixel[2]=m_pImgData[(j+1)*lineByteOut+i];
131             pixel[3]=m_pImgData[(j+1)*lineByteOut+(i+1)];
132             pixel[4]=m_pImgData[(j+1)*lineByteOut+(i+2)];
133             pixel[5]=m_pImgData[(j+2)*lineByteOut+(i+1)];
134             pixel[6]=m_pImgData[(j+2)*lineByteOut+(i+2)];
135             mean[8]=(float)(pixel[0]+pixel[1]+pixel[2]+pixel[3]+pixel[4]+pixel[5]+pixel[6])/7;
136             var[8]=0;
137             for(n=0;n<=6;n++)
138                 var[8]+=pixel[n]*pixel[n]-mean[8]*mean[8];
139             //求方差最小的近邻区域nmin
140             bmin=var[0];
141             nmin=0;
142             for(n=0;n<=8;n++)
143             {
144                 if(bmin>var[n])
145                 {
146                     bmin=var[n];
147                     nmin=n;
148                 }
149                 //把nmin的值四舍五入后作为显示图像的值
150                 m_pImgDataOut[j*lineByteOut+i]=(int)(mean[nmin]+0.5);
151             }                 
152         }
153 }


 

 

posted on 2012-07-20 18:29  NotValid  阅读(4565)  评论(0编辑  收藏  举报

导航