概率密度指数函数族与广义线性模型

Exponential Family

The pdf is as follows,

\[p(y;\eta)=b(y) e^{\eta^TT(y)-a(\eta)} \]

Mathematical properties:

  • MLE w.r.t. \(\eta\) is concave, but negative log likelihood is convex!
  • \(E(y;\eta)=\frac{\partial}{\partial \eta}a(\eta)\)
  • \(Var(y;\eta)=\frac{\partial^2}{\partial^2 \eta}a(\eta)\)

Generalized Linear Model

Assumptions:

  • \(y|x;\theta \sim \text{Exponential Family}(\eta)\)
  • \(\eta = \theta^Tx\) where \(\theta \in \R^{n+1}, x \in \R^{n+1}\)
  • Test time, output is \(E(y|x;\theta)\)

No matter what distribution you choose, the learning update rule can be uniformly

\[\theta_j := \theta_j +\alpha(y^{(i)}-h_\theta(x^{(i)}))x^{(i)}_j \]

posted @ 2022-08-11 16:49  19376273  阅读(87)  评论(0编辑  收藏  举报