理解MapReduce计算构架
用Python编写WordCount程序任务
程序 |
WordCount |
输入 |
一个包含大量单词的文本文件 |
输出 |
文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 |
1.编写map函数,reduce函数
首先在/home/hadoop路径下建立wc文件夹,在wc文件夹下创建文件mapper.py和reducer.py
1
2
3
4
|
cd / home / hadoop mkdir wc cd / home / hadoop / wc touch mapper.py |
1
|
touch reducer.py |
编写两个函数
mapper.py:
1
2
3
4
5
6
7
|
#!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print '%s\t%s' % (word, 1 ) |
reducer.py:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None for line in sys.stdin: line = line.strip() word, count = line.split( '\t' , 1 ) try : count = int (count) except ValueError: continue if current_word = = word: current_count + = count else : if current_word: print '%s\t%s' % (current_word, current_count) current_count = count current_word = word if current_word = = word: print '%s\t%s' % (current_word, current_count) |
2.将其权限作出相应修改
1
2
|
chmod a + x / home / hadoop / wc / mapper.py chmod a + x / home / hadoop / wc / reducer.py |
3.本机上测试运行代码
1
2
3
|
echo "foo foo quux labs foo bar quux" | / home / hadoop / wc / mapper.py echo "foo foo quux labs foo bar quux" | / home / hadoop / wc / mapper.py | sort - k1, 1 | / home / hadoop / wc / reducer.py |
4.放到HDFS上运行
下载文本文件或爬取网页内容存成的文本文件:
1
2
3
|
cd / home / hadoop / wc wget http: / / www.gutenberg.org / files / 5000 / 5000 - 8.txt wget http: / / www.gutenberg.org / cache / epub / 20417 / pg20417.txt |
5.下载并上传文件到hdfs上
1
|
hdfs dfs - put / home / hadoop / hadoop / gutenberg / * .txt / user / hadoop / input |
6.用Hadoop Streaming命令提交任务
寻找你的streaming的jar文件存放地址:
1
|
cd / usr / local / hadoop / share / hadoop / tools / lib / hadoop - streaming - 2.7 . 1.jar |
打开环境变量配置文件:
1
|
gedit ~ / .bashrc |
在里面写入streaming路径:
1
|
export STREAM = $HADOOP_HOME / share / hadoop / tools / lib / hadoop - streaming - * .jar |
让环境变量生效:
1
2
|
source ~ / .bashrc echo $STREAM |
建立一个shell名称为run.sh来运行:
1
|
gedit run.sh |
1
2
3
4
5
6
7
|
hadoop jar $STREAM - file / home / hadoop / wc / mapper.py \ - mapper / home / hadoop / wc / mapper.py \ - file / home / hadoop / wc / reducer.py \ - reducer / home / hadoop / wc / reducer.py \ - input / user / hadoop / input / * .txt \ - output / user / hadoop / wcoutput |
1
|
source run.sh |