UVA 10537 The Toll! Revisited 最短路
d[u]表示从u离开时最少需要多少才能达到要求。
从终点开始往前更新,求出前继结点最少需要的d是多少
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<iostream> #include<sstream> #include<cmath> #include<climits> #include<string> #include<map> #include<queue> #include<vector> #include<stack> #include<set> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> pii; #define pb(a) push(a) #define INF 0x1f1f1f1f #define lson idx<<1,l,mid #define rson idx<<1|1,mid+1,r #define PI 3.1415926535898 template<class T> T min(const T& a,const T& b,const T& c) { return min(min(a,b),min(a,c)); } template<class T> T max(const T& a,const T& b,const T& c) { return max(max(a,b),max(a,c)); } void debug() { #ifdef ONLINE_JUDGE #else freopen("d:\\in1.txt","r",stdin); freopen("d:\\out1.txt","w",stdout); #endif } int getch() { int ch; while((ch=getchar())!=EOF) { if(ch!=' '&&ch!='\n')return ch; } return EOF; } struct Edge { int from,to,dist; }; struct HeapNode { ll d; int u; bool operator < (const HeapNode &ant ) const { return d>ant.d; } }; ll BS(ll x,int u) { if(u>=26)return x+1; ll l=0,r=LONG_LONG_MAX; while(l<r) { ll mid=(r+l)>>1; if(mid-(mid%20==0?mid/20:mid/20+1)>=x) r=mid; else l=mid+1; } return l; } const int maxn = 55; const int n=52; vector<int> g[maxn]; vector<Edge> edge; int done[maxn]; ll d[maxn]; int p[maxn]; int toid(char c) { if(c>='A'&&c<='Z')return c-'A'; else return c-'a'+26; } char tochar(int id) { if(id<26)return id+'A'; else return id-26+'a'; } void init() { for(int i=0;i<n;i++) g[i].clear(); edge.clear(); } void add(int u,int v,int w) { Edge e=(Edge){u,v,w}; edge.push_back(e); g[u].push_back(edge.size()-1); } void dijksta(int e,int need) { for(int i=0;i<n;i++) d[i]=LONG_LONG_MAX; memset(done,0,sizeof(done)); priority_queue<HeapNode> q; d[e]=need; p[e]=-1; q.push((HeapNode){need,e}); while(!q.empty()) { HeapNode x=q.top();q.pop(); int u=x.u; if(done[u])continue; done[u]=1; for(int i=0;i<g[u].size();i++) { int v=edge[g[u][i]].to; ll w=BS(d[u],u); if(w<d[v]) { d[v]=w; p[v]=u; q.push((HeapNode){d[v],v}); } } } } int main() { int m; int ca=0; while(scanf("%d",&m)!=EOF&&m!=-1) { init(); for(int i=1;i<=m;i++) { int u=toid(getch()); int v=toid(getch()); add(u,v,1); add(v,u,1); } int need; scanf("%d",&need); int s=toid(getch()),e=toid(getch()); dijksta(e,need); ll res=d[s]; printf("Case %d:\n",++ca); printf("%lld\n",res); int G[maxn][maxn]={0}; for(int i=0;i<n;i++) for(int j=0;j<g[i].size();j++) G[i][edge[g[i][j]].to]=1; for(int u=s;;) { printf("%c%c",tochar(u),u==e?'\n':'-'); if(u==e)break; for(int i=0;i<n;i++) { if(G[u][i]&&d[u]==BS(d[i],i)) { u=i;break; } } } } return 0; }