UVA 1364 Knights of the Round Table 双连通分量+二分图判定
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<iostream> #include<sstream> #include<cmath> #include<climits> #include<string> #include<map> #include<queue> #include<vector> #include<stack> #include<set> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> pii; #define pb(a) push(a) #define INF 0x1f1f1f1f #define lson idx<<1,l,mid #define rson idx<<1|1,mid+1,r #define PI 3.1415926535898 template<class T> T min(const T& a,const T& b,const T& c) { return min(min(a,b),min(a,c)); } template<class T> T max(const T& a,const T& b,const T& c) { return max(max(a,b),max(a,c)); } void debug() { #ifdef ONLINE_JUDGE #else freopen("d:\\in1.txt","r",stdin); freopen("d:\\out1.txt","w",stdout); #endif } int getch() { int ch; while((ch=getchar())!=EOF) { if(ch!=' '&&ch!='\n')return ch; } return EOF; } struct Edge { int u,v; }; const int maxn=1111; int pre[maxn],iscut[maxn],bccno[maxn]; int dfs_clock,bcc_cnt; vector<int> g[maxn],bcc[maxn]; stack<Edge> s; int dfs(int u,int fa) { int lowu = pre[u] = ++dfs_clock; int child=0; for(int i=0;i<g[u].size();i++) { int v=g[u][i]; Edge e = (Edge){u,v}; if(!pre[v]) { s.push(e); child++; int lowv=dfs(v,u); lowu=min(lowu,lowv); if(lowv>=pre[u]) { bcc_cnt++; bcc[bcc_cnt].clear(); iscut[u]=true; while(1) { Edge x=s.top();s.pop(); if(bccno[x.u]!=bcc_cnt) { bcc[bcc_cnt].push_back(x.u); bccno[x.u]=bcc_cnt; } if(bccno[x.v]!=bcc_cnt) { bcc[bcc_cnt].push_back(x.v); bccno[x.v]=bcc_cnt; } if(x.u==u&&x.v==v)break; } } }else if(pre[v]<=pre[u]&&v!=fa) { lowu=min(pre[v],lowu); s.push(e); } } if(fa<0&&child==1)iscut[u]=0; return lowu; } void find_bcc(int n) { memset(bccno,0,sizeof(bccno)); memset(iscut,0,sizeof(iscut)); memset(pre,0,sizeof(pre)); dfs_clock=bcc_cnt=0; for(int i=0;i<n;i++) if(!pre[i])dfs(i,-1); } int odd[maxn],color[maxn]; bool bipartite(int u,int b) { for(int i=0;i<g[u].size();i++) { int v=g[u][i]; if(bccno[v]!=b)continue; if(color[v]==color[u])return false; if(!color[v]) { color[v]=3-color[u]; if(!bipartite(v,b))return false; } } return true; } int A[maxn][maxn]; int main() { int ca=0,n,m; while(scanf("%d%d",&n,&m)!=EOF&&n) { memset(A,0,sizeof(A)); for(int i=0;i<n;i++) g[i].clear(); for(int i=0;i<m;i++) { int u,v; scanf("%d%d",&u,&v); u--;v--; A[u][v]=A[v][u]=1; } for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { if(!A[i][j]) { g[i].push_back(j); g[j].push_back(i); } } } find_bcc(n); memset(odd,0,sizeof(odd)); for(int i=1;i<=bcc_cnt;i++) { memset(color,0,sizeof(color)); for(int j=0;j<bcc[i].size();j++)bccno[bcc[i][j]]=i; int u=bcc[i][0]; color[u]=1; if(!bipartite(u,i)) for(int j=0;j<bcc[i].size();j++) odd[bcc[i][j]]=1; } int res=0; for(int i=0;i<n;i++) if(!odd[i])res++; printf("%d\n",res); } return 0; }